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Abstract

We examine how the optimal degree of policy divergence between two policy plat-
forms in an election is affected by two types of aggregate uncertainty: policy-related
and candidate-specific. We show that when the candidate-specific uncertainty is suf-
ficiently large, policy convergence becomes optimal. We also show that when these
two types of uncertainty co-exist, only purely office-motivated parties result in policy
convergence, in other words, any level of policy motivation of parties results in some
policy divergence, making policy motivation undesirable when candidate-specific un-
certainty is sufficiently large.
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1 Introduction

Many experts and the public seem to agree that it is not desirable that political parties
champion very similar, if not the same, policies, because voters will have no meaningful
choice. In spite of this consensus, the most famous theoretical result on electoral compe-
tition, namely the median voter theorem (Downs, 1957a,b), predicts precisely that parties
choose the same policy platform, which is the ideal policy of the median voter. Moreover,
this is socially optimal as long as the welfare maximizing policy coincides with the median
voter’s ideal policy. More generally, under some usual assumptions such as symmetric,
single-peaked and risk-averse preferences of voters, voters prefer both parties offering the
median voter’s ideal policy rather than the two parties offering policies symmetric and
equally distant from the median voter’s ideal policy (such that they each have a chance to
win the election).

Bernhardt et al. (2009) propose a potential solution to this puzzle. They argue that, if
there is a shock on voter preferences so that the ideal policy positions of voters shift after
political parties have made their policy commitments to voters (but before the election
takes place), then parties offering different platforms symmetrically situated around the
median voter’s expected ideal policy are better for all voters than parties both offering
the median voter’s expected ideal policy. This is so because the presence of divergent
policy platforms offers to voters hedging against the preference shock. They also show
that policy-motivated parties are better in terms of the social welfare for a wide parameter
range, because they offer divergent policy platforms, whereas office-motivated parties offer
the same policy in equilibrium.

We contribute in this debate by, first, observing that political campaigning often entails
more than one source of uncertainty. Indeed, in many recent campaigns in both the US and
Europe issues such as the competency of handling the coronavirus pandemic, the moral
character of the candidates, and gender or minority-race representation, have been as
central as (if not more central than) political platforms on fiscal policies, immigration and
foreign policy. While Bernhardt et al. (2009) model explicitly only uncertainty over political
preferences, uncertainty over candidate characteristics matters as well. We use the terms
candidate-specific uncertainty and preference uncertainty to distinguish between these two
broad categories. Accordingly, we generalize Bernhardt et al. (2009) by incorporating both
types of uncertainty into a single model.

Second, we find that the inclusion of candidate-specific uncertainty is consequential for
the welfare properties of the median-voter theorem. When candidate-specific uncertainty is
strong enough, convergent policy platforms are optimal for all voters. Hence, whether con-
vergence of political platforms is socially desirable or not depends on the relative strength
of these two uncertainty sources.

Third, and perhaps more importantly, the welfare properties of any political equilib-
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rium depend on the interaction between the two types of uncertainty and the motives of
political parties. As stated earlier, Bernhardt et al. (2009) show that when there is only
preference uncertainty, then policy-motivated candidates propose platforms closer to the
social optimum than office-motivated platforms, provided candidate ideologies are not too
extreme. However, when we add candidate-specific uncertainty into their model, the re-
sults change. When candidate-specific uncertainty is strong enough, then office-motivated
candidates are better positioned to serve the electorates’ interests than policy-motivated
parties. This is because office-motivated parties generate the first-best political equilib-
rium, i.e. policy platforms which are convergent to the median voter’s expected ideal
policy, whereas policy-motivated parties generate policy divergence, which is suboptimal
in this case.

Finally, when policy convergence is optimal in our model, then parties with any positive
degree of mixed motives between office and policy generate suboptimal political equilibria.
This is because, with two sources of uncertainty, parties with mixed-motives always produce
some degree of policy divergence no matter how small. Note that this is contrast to the
Bernhardt et al. (2009) model, where a finite level of office motivation is sufficient to
generate full policy convergence of equilibrium platforms to the median voter’s preferred
policy. In our model this is impossible, because candidate-specific uncertainty incentivizes
parties with mixed motives to deviate from full convergence. Intuitively, they trade-off an
infinitesimally small probability of losing the election for a positive payoff due to policy
motivations.

As a general message, we see that whether policy convergence and office-motivated par-
ties are desirable depends on the situation, and more specifically on the relative importance
of different types of uncertainties. For instance, when a population considers a new area
in policy such as big tech regulation, policy preference uncertainty is likely to be high,
and this would imply that voters would be better off with different choices coming from
policy-motivated parties. On the other hand, when there is high uncertainty with respect
to candidate characteristics, which is more likely with the emergence of new candidates
in a party structure, office motivation becomes valuable for voters since it induces policy
convergence.

Ever since Downs’s seminal work (Downs, 1957a,b), candidates’ position choice is a
central topic in political economy. While the classical median voter framework identi-
fies reasons for platform convergence, many subsequent electoral competition models de-
velop different reasons for policy divergence, including policy motivation (Wittman, 1983;
Calvert, 1985; Londregan and Romer, 1993; Osborne and Slivinski, 1996; Besley and Coate,
1997; Martinelli, 2001; Gul and Pesendorfer, 2009); entry deterrence (Palfrey, 1984; Callan-
der, 2005); agency problems (Van Weelden, 2013); incomplete information among voters
or candidates (Castanheira, 2003; Bernhardt et al., 2007; Callander, 2008); and differential
candidate valence (Bernhardt and Ingerman, 1985; Groseclose, 2001; Krasa and Polborn,
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2010, 2012; Bierbrauer and Boyer, 2013).
There are two main differences between this paper and the above literature. First,

most of the above papers focus on positive analysis only. The welfare implications of
the deviations from the median voter’s ideal policy for the rest of the electorate are not
examined. In contrast, following Bernhardt et al. (2009), we identify conditions so that
the deviation may be welfare enhancing or welfare reducing for all voters. Second, we
show that, even if a benevolent planner were able to carefully calibrate the degree of office
motivation or policy motivation of the candidates (but can not completely remove it), there
are cases where the first-best policy can not be implemented as long as parties have any
level of policy motivation, however small. That is, political competition is an imperfect
instrument for adopting the socially optimal policy in our paper.

Naturally, there are several sources of uncertainty that are relevant for political compe-
tition. Voters may exhibit idiosyncratic shocks to their partisanship (Hinich et al., 1972;
Lindbeck and Weibull, 1993; Banks and Duggan, 2005), they may be influenced by common
shocks to their policy preferences (Bernhardt et al., 2009; Roemer and Roemer, 2009), or
unforeseen events may force them to re-evaluate the valence of the candidates (Groseclose,
2001; Adams et al., 2005; Schofield, 2007; Adams and Merrill III, 2009). Callander (2011)
proposes an additional source, uncertainty over how policies map into outcomes and advo-
cates for policy experimentation playing a role in platform divergence. All these sources
are important determinants of voting decisions and political outcomes. Our analysis fo-
cuses on two of them because we want to make a simple point. The welfare properties of
a political equilibrium depend not only on which type of uncertainty dominates, but also
on the motives of political parties.

Moreover, we are not aware of any other paper that consider both preference and
candidate-specific uncertainty simultaneously in the same model. In general, one of these
two uncertainties is assumed mainly for analytical convenience. We demonstrate that the
inclusion of both types of uncertainty may change the welfare properties of the political
equilibrium and especially so when party motives are allowed to vary. Ashworth and
De Mesquita (2009) consider a different problem than ours first with preference uncertainty,
and second with candidate-specific uncertainty and obtain drastically different results.
Therefore, they emphasize “the overlooked substantive importance of common modeling
assumptions”.

We present the general model in Section 2 and our result on optimal policy divergence
in Section 3. Then, we illustrate our result using quadratic utility function in Section 4.
The following Section 5 studies the political equilibrium with political parties with different
policy and office motivations in order to see which types of parties are better fitted for voter
welfare. Finally, Section 6 briefly concludes.

4



2 The Model

There is a one-dimensional policy space, a set of voters, and two candidates. Each voter,
indexed by v, has single-peaked preferences over policies, which are symmetric around his
bliss point δv. Voters’ bliss points are distributed on the interval [δ, δ] and the median
voter has δv = 0.

The two candidates L and R propose, respectively, aL ≤ 0 and aR ≥ 0 as policy
choices to the electorate. We focus on cases where the two candidates position themselves
symmetrically around the median. Thus, we denote by a ≥ 0 the positioning of the right-
wing candidate and by −a ≤ 0 the positioning of the left-wing candidate. When a = 0,
the positions of the two candidates converge with the median voter’s most preferred policy.
This would be indeed the equilibrium if there was no uncertainty about voter preferences,
as shown by the celebrated median voter theorem.

This standard model is enriched by two sources of uncertainty. The first one is with
regards to policy preferences as in Bernhardt et al. (2009). This is captured by an aggregate
policy preference shock µ ∈ R which shifts the bliss point of all voters either to the left
or to the right by the same distance. Therefore, for any realized value µ, the bliss point
of voter v is given by δv + µ. The probability density function of µ is denoted by f(·),
which is single-peaked at and symmetric around zero. The value of µ is drawn and revealed
after the candidates made their pledges in the political campaign, but before the election
takes place. Hence, it is meant to capture all sources of uncertainty that can shift the
political preferences of the electorate en masse during the election campaign. For example,
a terrorist attack may enhance the preoccupation of voters with security considerations
and push the electorate to become more conservative. Alternatively, a financial crisis may
make lax fiscal policies more salient and push the electorate to left-leaning policies.

The second source of uncertainty is with regards to the voters’ perception of the can-
didates themselves and is orthogonal to the policy preference shock. Events such as a
corruption scandal or the candidates’ performance in broadcasted debates may change the
voters’ perception on their competence or credibility in one direction or another. The term
that captures voters’ perception of the candidates is σγγ, where σγ > 0 is a constant and
γ ∈ R is a random variable with mean zero and unit variance, so the variance of σγγ is σ2

γ.

A positive value of γ means that L gives an extra σγγ units of utility to all voters relative to
R. Intuitively, this means L is viewed as a more favorable candidate than R. The opposite
is true if γ is negative. The probability density function of γ is denoted by h (·), which is
differentiable, symmetric at and single-peaked around zero. The corresponding cumulative
distribution function is denoted by H (·).

Conditional on the realization of µ, voter v’s utility from policy a is given by

u (δv + µ− a) = w [d (δv + µ− a)] . (1)
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The function d : R→ R+ is a distance function that measures the gap between the voter’s
state-dependent ideal policy and the final policy. It is assumed to be a twice continuously
differentiable even function, i.e., d (z) = d (−z) , for all z ∈ R, strictly increasing and
convex for z > 0, and satisfies d (z) ≥ 0 for all z ∈ R. These assumptions imply

d′ (z) = −d′ (−z) > 0 and d′′ (z) = d′′ (−z) ≥ 0,

for all z > 0. It follows that d (·) is strictly decreasing and convex for all z < 0. The
function w : R+ → R is a loss function, which is twice continuously differentiable, strictly
decreasing and concave.

Given these assumptions, the utility function u (·) can be shown to satisfy

u(n) (z) = (−1)n u(n) (−z) ,

for n ∈ {0, 1, 2} and for all z ∈ R.1 In particular, the first- and second-order derivatives of
(1) with respect to a are given by

d

da
u (δv + µ− a) = −w′ [d (δv + µ− a)] d′ (δv + µ− a) ≶ 0 iff a ≷ (µ+ δv)

d2

da2u (δv + µ− a) = w′′ [d (δv + µ− a)]︸ ︷︷ ︸
(−)

[d′ (δv + µ− a)]2+w′ [d (δv + µ− a)]︸ ︷︷ ︸
(−)

d′′ (δv + µ− a)︸ ︷︷ ︸
(+)

< 0.

In words, these mean u (δv + µ− a) is a hump-shaped function in a which peaks at a =
µ+ δv and strictly concave on both sides. One example of such u (·) is the quadratic utility
function, which is the composition of w (x) = −x and d (z) = z2.

The timing of the voting game is as follows: The candidates make their political pledges
first, then γ and µ materialize. After the voters observe these values, they cast their ballot
sincerely and without abstention. If R wins, voter v’s utility is u (δv + µ− a) , and if L
wins, his utility is u (δv + µ+ a) + σγγ. The candidate that garners the majority of votes
wins and his policy is implemented.

3 Optimal Policy Divergence

In this section, we ask the following normative question: Which pair of policy platforms
(−a, a) would maximize voters’ ex ante welfare? Then in the next section, we will solve
for the political equilibrium and discuss whether they correspond to the socially optimal
platforms we study in this section. In the equilibrium analysis, we focus on symmetric
political equilibria in which candidates choose their policy platforms without knowing the
realization of µ and γ. To make the comparison consistent, we confine our attention to ex

1The notation u(n) (·) represents the nth order derivative of u (·), with u(0) (·) ≡ u (·) .
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ante (i.e., before the uncertainties are realized) socially optimal symmetric policy platforms
in this section.

The main result of Bernhardt et al. (2009) is that some degree of policy divergence is
socially optimal as all voters prefer it to policy convergence at the median voter’s ex ante
ideal policy. If we call the optimal policy platforms (−a∗, a∗), then Bernhardt et al. (2009,
Proposition 2) states that it is socially optimal to have a∗ > 0. As explained in Section 2,
aggregate uncertainty over political preferences generates risk for voters and the divergence
of political platforms hedges against it. This hedging mechanism, however, may not work
in the presence of candidate-specific uncertainty.2 Our first main result is to qualify this
statement using the model presented in Section 3. To be more precise, we show that when
the degree of candidate-specific uncertainty is sufficiently large, then policy convergence is
preferred by all voters.

We start the analysis with the following observations: First consider the case when
both types of uncertainty exist. After the values of µ and γ materialize, voter v will vote
for R if and only if

u(δv + µ− a) > u(δv + µ+ a) + σγγ

⇔ γ <
1
σγ

[u(δv + µ− a)− u(δv + µ+ a)] . (2)

The median voter is decisive in the election, therefore R wins if and only if (2) holds for
δv = 0, i.e.,

γ <
1
σγ

[u(µ− a)− u(µ+ a)] ≡ $. (3)

Therefore, the expected utility of voter v before the resolution of uncertainty is given by:

E [Uv(a)] =
∫ ∞
−∞

{∫ $

−∞
u(δv + µ− a)h(γ)dγ +

∫ ∞
$

[u(δv + µ+ a) + σγγ]h(γ)dγ
}
f(µ)dµ

(4)

If the candidate-specific uncertainty is absent, so that γ = 0 with certainty, then R

wins if and only if µ > 0.3 In this case, the ex ante expected utility of voter v is given by

E
[
Ũv(a)

]
=
∫ ∞

0
u(δv + µ− a)f(µ)dµ+

∫ 0

−∞
u(δv + µ+ a)f(µ)dµ. (5)

The first integral in the above expression captures the expected utility when R wins,
whereas the second one gives the expected utility when L wins. It is obvious that, for any

2This type of uncertainty is absent in the model of Bernhardt et al. (2009). Their model is thus
equivalent to ours when γ = 0 with certainty.

3Specifically, R wins the election if and only if he is supported by the median voter, i.e., µ− a is closer
to zero than µ+ a. For any a > 0, this is true if and only if µ > 0.
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a > 0, µ−a < µ if µ > 0 and µ+a > µ if µ < 0. Thus, unless too much divergent, a pair of
symmetric and divergent policy platforms has the effect of condensing the arguments of the
utility function, i.e. the distance functions, both when R wins and L wins, δv + µ− a and
δv + µ+ a respectively.4 A graphical illustration of this is shown in Figures 1(a) and 1(b)
which illustrate the probability densities of the distance between final and ideal policies.
For a = 0, illustrated in Figure 1(a), this distribution coincides with the distribution of µ
since the final policy is always 0. The case of a small value of a is illustrated in Figure
1(b). The black left-hand side and the green right-hand side correspond respectively to
µ < 0 (L wins and the argument is δv + µ+ a) and to µ > 0 (R wins and the argument is
δv + µ − a). Such a change condenses the distribution and reduces the risk faced by any
risk-averse voter. Hence, they will strictly prefer divergent platforms to convergent ones,
i.e.,

E
[
Ũv(a)

]
> E

[
Ũv(0)

]
=
∫ ∞
−∞

u(δv + µ)f(µ)dµ.

This explains the hedging mechanism behind Bernhardt et al. (2009, Proposition 2).
This mechanism, however, has a limit. If a is “too large”, i.e., when there is “too much”
polarization, then it is possible that the two halves will drift too far apart [as in Figure
1(c)], and increases the risks faced by the voters instead.

However, when there is candidate-specific uncertainty, the results change. To illustrate
this, a similar figure to Figure 1(b) can be drawn for each possible realization of σγγ, and
all these figures can be juxtaposed with the weight given by the distribution h(γ). Here,
we illustrate two figures that correspond to two specific values of σγγ in order to give the
intuition. Figure 2(a) assumes small a and a small positive σγγ. The difference between
Figures 1(b) and 2(a) is that due to its candidate-specific advantage, L wins not only for
µ < 0, but also for small positive values of µ, i.e. L wins for µ < µ̃ with µ̃ > 0. Again,
the black left-hand side and the green right-hand side correspond respectively to L’s win
and the argument being δv + µ + a) and to R’s win and the argument being δv + µ − a).
Due to the symmetric distribution of γ, it is equally likely to have the mirror image of
this figure where R wins for a large set of values of µ. When these two cases (with same
absolute value of σγγ, but different signs) are juxtaposed, the resulting distribution will
be more spread out than Figure 1(b). Figure 2(b) assumes a higher positive value of σγγ,
and L wins now for even more positive values µ, i.e. wins for µ < µ̂ with µ̂ > µ̃. When
Figure 2(b) is juxtaposed with its mirror image, the spread of the distribution will be
stronger, compared to the previous case of smaller σγγ. Intuitively, even for small a, the
risk increases as high realizations of σγγ become predominant. Proposition 1 below shows
that even a small value of a is undesirable for voters if candidate-specific uncertainty is
large, that is, high values of σγγ in absolute value are likely.

4More formally, for any given a > 0, define a new random variable χ according to χ = µ− a if µ ≥ 0
and χ = µ+ a if µ < 0. If a is not “too large,” then χ has the same mean as µ but is less dispersed.
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Figure 1: Illustration of the benefit of policy divergence in the absence of candidate-specific
uncertainty
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Figure 2: Illustration of the effect of candidate-specific uncertainty
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Proposition 1. For sufficiently large σγ, all voters strictly prefer the convergent policy
platforms (−a, a) = (0, 0) to any other symmetric policy platforms with a > 0.

In the proof, we show that (dEUv(a,−a))/(da) < 0 for any a > 0 and any voter δv
for sufficiently large σγ. To gain further intuition, consider the marginal effect of policy
divergence given by:

dEUv(a,−a;µ, γ)
da

=
+∞∫
−∞

{
u′(a− µ− δv)H(w̃) + u′(−a− µ− δv)(1−H(w̃))

+ h(w̃)dw̃
da

[u(a− µ− δv)− u(−a− µ− δv)− [u(a− µ)− u(−a− µ)]]
}
f(µ)dµ,

where the first two terms of the integrand measures the change in policy utility as a result
of a larger a when L wins and when R wins, weighted the their winning probabilities.
Another effect is that when a increases, the difference between candidates’ policy platforms
increases, and this leads to an increased likelihood that policy preferences determine the
winner. The third term of the integrand captures this effect and is shown to be arbitrarily
small when the candidate-specific uncertainty is sufficiently large. Notice that the third
term is 0 for the median voter, i.e. for δv = 0. This is because when the winner changes,
it is exactly because the new winner gives now a marginally higher utility to the median
voter than the old winner. We further show in the proof that this term is arbitrarily small
for large σγ.

As σγ increases indefinitely, w̃ will be close to zero even if a > 0. Because of this, the
two candidates will have equal probability of winning even if they propose different policies.
The intuition behind this can best be explained by considering a two-point distribution
of γ. Suppose now there are only two possible values of γ, say γL and γH , which are
equidistant on both sides of zero and happens with equal probability. An increase in the gap
|γH − γL| will have the same effect as an increase in σγ.When this happens, concerns about
candidate-specific characteristics (such as competence or credibility) become increasingly
important for voters’ decisions, while policy preferences become less so. In the extreme
case, the realization of γ alone will determine the winner of the election, regardless of the
candidates’ platforms (−a, a) and the policy preference shock µ.5 In terms of our notations,
this is represented by w̃ = 0 and H (0) = 1/2. In this case, the outcome of the election is
a pure lottery. Hence, any risk-averse voter would strictly prefer the convergent platforms
(which guarantee a certain outcome) to any divergent ones.

5The independence between election outcome and µ is the main reason why the aforementioned hedging
mechanism breaks down when σγ is sufficiently large.
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4 Quadratic Utility

In this section, we illustrate the result in Proposition 1 by assuming a quadratic policy
utility function, i.e., u (x) = −x2. Using this type of preferences, we are able to derive
a unique threshold value of σγ above which all voters would strictly prefer convergent
symmetric policy platforms and below which all voters would strictly prefer divergent
platforms. We are also able to show that the optimal level of policy divergence, when
non-zero, decreases as candidate-specific uncertainty increases. These results are formally
stated in Proposition 2.

Proposition 2. Under a quadratic policy utility function, all voters have the same prefer-
ence ordering over policy pairs (−a, a). Define σmin ≡ 16h (0)

∫∞
0 µ2f (µ) dµ.

1. If σγ ≥ σmin, then all voters would strictly prefer convergent symmetric policy plat-
forms (−a, a) = (0, 0) to any other symmetric platforms with a > 0. i.e., E [Uv(0)] >
E [Uv(a)], for all a > 0 and for all v.

2. If σγ < σmin, then there exists a unique a∗ > 0 such that all voters would strictly prefer
the divergent symmetric policy platforms (−a∗, a∗) to any other symmetric platforms,
i.e., E [Uv(a∗)] > E [Uv(a)], for all a ≥ 0, a 6= a∗, and for all v. Furthermore, a∗

decreases in σγ, i.e. da∗/dσγ < 0.

Under quadratic utility, the first-order condition of maximizing E [Uv (a)] with respect
to a is independent of δv. Thus, if the median voter prefers policy convergence, then so
are the other voters. Bernhardt et al. (2009) also have this result with the quadratic loss
function and the policy preference shock µ. Our result shows that this stays true with the
additional uncertainty over γ.

An explicit formula for σmin can be obtained if h (·) is the standard normal density
function, i.e.,

h (γ) = 1√
2π

exp
(
−1

2γ
2
)
,

and f (·) is the density function of N
(
0, σ2

µ

)
, i.e.,

f (µ) = 1√
2πσµ

exp
−1

2

(
µ

σµ

)2
 .
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Then the threshold value σmin can be expressed as6

σmin = 8
π

1
σµ

∫ ∞
0

µ2 exp
−1

2

(
µ

σµ

)2
 dµ = 4

√
2
π
σ2
µ.

This result states that, when the utility function is quadratic and the two shocks are
normal random variables, the threshold value of σγ is directly proportional to σ2

µ. Thus,
whether policy convergence is socially optimal depends on the relative riskiness of the two
shocks. In particular, policy convergence is socially optimal if the risk associated with
the candidate-specific shock is significantly higher than that associated with the policy
preference shock. Otherwise, policy divergence is beneficial to all voters.

5 Political Equilibrium

We assume that the ideal policies of the two candidates L and R are −ψ and ψ respectively,
with ψ > 0. For their payoff functions, we consider two possibilities. First, we assume
that they are both policy- and office-motivated; second, we assume that they are purely
office-motivated. The timing of the game is as follows: First, parties L and R announce
simultaneously their electoral platforms aL ≤ 0 and aR ≥ 0 respectively. Then, the uncer-
tainty on µ and γ is resolved, the election takes place, and the winner’s electoral platform
is implemented. In what follows, we focus on symmetric equilibria, i.e. aR = −aL = a.

When parties are both policy- and office-motivated, given aL = −a, party R’s payoff
function is given by

UR(−a, aR) = Pr(R wins)[u(aR − ψ) + b] + Pr(L wins)u(−a− ψ)

where b ≥ 0 represents the office rents in case of victory, and the probability that R wins
is given by

Pr(R wins) =
∫ ∞
−∞

H

(
1
σγ

(u(aR − µ)− u(−a− µ))
)
f(µ)dµ.

Finally, Pr(L wins) = 1 − Pr(R wins). An increase in b reflects an increase in the office-
motivation component, and conversely, b = 0 represents the pure policy-motivation case.

When parties are purely office-motivated, their payoff is simply b if they win the election,
and 0 otherwise.

6The second equality uses the formula∫ ∞
0

µ2 exp
(
−Aµ2) dµ = 1

4

√
π

A3 ,

for any A > 0, which can be found in any table of integrals. See, for instance, (Dwight, 1947) Equation
861.7.
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As summarized in the proposition below, we show that policy convergence is an equi-
librium if and only if parties are purely office-motivated. When parties are both office-
and policy-motivated (or purely policy-motivated), the trade-off of a party is to choose a
more moderate policy to increase its chance of winning versus to choose a policy closer to
its ideal policy to increase its payoff in case of victory. Bernhardt et al. (2009) shows that
if b is large enough, policy convergence is an equilibrium. As opposed to Bernhardt et al.,
policy convergence is not an equilibrium in our model even for arbitrarily large values of
b, in other words, even when policy motivation is arbitrarily small relative to office moti-
vation. This is because the introduction of policy-unrelated uncertainty leads to the result
that the derivative of the winning probability is 0 at a = 0, in other words, an infinitely
small move from a = 0 does not reduce the winning probability, and therefore parties do
not choose a = 0 as long as they have some policy motivation, however small.

Proposition 3. When parties are not purely office-motivated, in any symmetric equilib-
rium (when it exists) (−a∗, a∗), a∗ 6= 0. When parties are purely office-motivated, in any
symmetric equilibrium (−a∗, a∗), a∗ = 0.

We conclude from this proposition that when candidate-specific uncertainty is suffi-
ciently large, purely office-motivated parties is first-best for voter welfare and that any
level of policy motivation for parties prevents the realisation of the first-best outcome.

6 Conclusion

In this paper we show how the relative strength between preference uncertainty and
candidate-specific uncertainty determine the optimality of policy convergence (divergence).
Our main result is more than a mere generalisation of Bernhardt et al. (2009), as it points
to how party motivation interacts with the source of uncertainty to determine the welfare
properties of the canonical political equilibrium. While in Bernhardt et al. (2009) policy
divergence is optimal and so some degree of policy motivation is necessary to achieve the
first-best political equilibrium, in our model any positive degree of policy motivation is
undesirable if candidate-specific uncertainty is strong enough. This is because candidate-
specific uncertainty erodes the expected benefit of platform diversification by reducing the
probability that the party with the policy closest to the median voter wins the election.
Since policy motivation, however small, induces some degree of divergence, it generates
suboptimal political equilibria.
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Appendix

Proof of Proposition 1

The proof focuses on the utility maximization problem for an arbitrary voter v,

max
a≥0

E [Uv (a)] . (P1)

First, it is shown that if H (0) = 1/2 (which is true if H is symmetric around zero), then
for any δv, the first-order condition of this maximization problem is satisfied at a = 0, i.e.,

dE [Uv (a)]
da

∣∣∣∣∣
a=0

= 0.

Second, it is shown that if σγ is sufficiently large, then the second-order condition for a
maximum is also satisfied at a = 0, i.e.,

d2E [Uv (a)]
da2

∣∣∣∣∣
a=0

< 0.

This establishes that a = 0 is a solution of (P1) when σγ is sufficiently large. Finally, it is
shown that there is no interior solution (i.e., a > 0) of (P1) when σγ is sufficiently large.
Hence, a = 0 is the unique solution when σγ is sufficiently large.

Fix µ ∈ R. Then voter v’s expected utility is given by

∫ w̃

−∞
u (δv + µ− a)h (γ) dγ +

∫ ∞
w̃

[u (δv + µ+ a) + σγγ]h (γ) dγ

= u (δv + µ− a)H (w̃) + u (δv + µ+ a) [1−H (w̃)] + σγ

∫ ∞
w̃

γh (γ) dγ

= [u (δv + µ− a)− u (δv + µ+ a)]H (w̃) + u (δv + µ+ a) + σγ

∫ ∞
w̃

γh (γ) dγ. (6)

Define the following auxiliary functions:

Φ (a;µ, δv) ≡ [u (δv + µ− a)− u (δv + µ+ a)]H (w̃) ,

Ψ (a;µ, δv) ≡ u (δv + µ+ a) + σγ

∫ ∞
w̃

γh (γ) dγ.

Then the expected utility is (6) is the sum of Φ (a;µ, δv) and Ψ (a;µ, δv) . Differentiating
these functions with respect to a gives

d

da
Φ (a;µ, δv) = [−u′ (δv + µ− a)− u′ (δv + µ+ a)]H (w̃)

+ [u (δv + µ− a)− u (δv + µ+ a)]h (w̃) dw̃
da
, (7)
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d

da
Ψ (a;µ, δv) = u′ (δv + µ+ a)− σγw̃h (w̃) dw̃

da
, (8)

where
dw̃

da
= 1
σγ

[−u′ (µ− a)− u′ (µ+ a)] .

The second-order derivatives with respect to a are given by

d2

da2 Φ (a;µ, δv) = [u′′ (δv + µ− a)− u′′ (δv + µ+ a)]H (w̃)

+2 [−u′ (δv + µ− a)− u′ (δv + µ+ a)]h (w̃) dw̃
da

+ [u (δv + µ− a)− u (δv + µ+ a)]
{
h′ (w̃) dw̃

da
+ h (w̃) d

2w̃

da2

}
, (9)

d2

da2 Ψ (a;µ, δv) = u′′ (δv + µ+ a)− σγ

h (w̃)
[
dw̃

da

]2

+ w̃h′ (w̃)
[
dw̃

da

]2

+ w̃h (w̃) d
2w̃

da2

 ,
(10)

where
d2w̃

da2 = 1
σγ

[u′′ (µ− a)− u′′ (µ+ a)] .

When evaluated at a = 0,

w̃ = 1
σγ

[u (µ)− u (µ)] = 0,

dw̃

da

∣∣∣∣∣
a=0

= 1
σγ

[−u′ (µ)− u′ (µ)] = −2u′ (µ)
σγ

.

The first-order derivatives in (7) and (8) then become

d

da
Φ (a;µ, δv)

∣∣∣∣∣
a=0

= −2u′ (δv + µ)H (0) .

d

da
Ψ (a;µ, δv)

∣∣∣∣∣
a=0

= u′ (δv + µ) .

Hence,

dE [Uv (a)]
da

∣∣∣∣∣
a=0

=
∫ ∞
−∞

{
d

da
Φ (a;µ, δv)

∣∣∣∣∣
a=0

+ d

da
Ψ (a;µ, δv)

∣∣∣∣∣
a=0

}
f (µ) dµ

= [1− 2H (0)]
∫ ∞
−∞

u′ (δv + µ) f (µ) dµ.

It follows that if H (0) = 1/2, then

dE [Uv (a)]
da

∣∣∣∣∣
a=0

= 0 for all δv.
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Next, we turn to the second-order condition at a = 0. First note that,

d2w̃

da2

∣∣∣∣∣
a=0

= 1
σγ

[u′′ (µ)− u′′ (µ)] = 0.

The expressions in (9) and (10) can now be simplified to become

d2

da2 Φ (a;µ, δv)
∣∣∣∣∣
a=0

= 8u′ (δv + µ)h (0) u
′ (µ)
σγ

.

d2

da2 Ψ (a;µ, δv)
∣∣∣∣∣
a=0

= u′′ (δv + µ)− 4h (0) [u′ (µ)]2

σγ
.

Hence,

d2E [Uv (a)]
da2

∣∣∣∣∣
a=0

= 4h (0)
σγ

∫ ∞
−∞

u′ (µ) [2u′ (δv + µ)− u′ (µ)] f (µ) dµ+
∫ ∞
−∞

u′′ (δv + µ) f (µ) dµ.

The second integral is strictly negative due to the strict concavity of u (·) . The sign of the
first integral is ambiguous in general. However, this term can be made arbitrarily small by
raising the value of σγ. Thus, as σγ →∞,

d2E [Uv (a)]
da2

∣∣∣∣∣
a=0
→
∫ ∞
−∞

u′′ (δv + µ) f (µ) dµ < 0.

This proves that a = 0 is a solution of (P1).
We now establish the uniqueness of a = 0. Recall that as σγ → ∞, w̃ → 0 and

dw̃/da → 0 for any (a, µ) . Using these, we can simplify the first-order derivatives in (7)
and (8) to become

d

da
Φ (a;µ, δv) = [u′ (δv + µ− a)− u′ (δv + µ+ a)]H (0) ,

d

da
Ψ (a;µ, δv) = u′ (δv + µ+ a) .

Hence, any interior solution ã > 0, if exists, must satisfy the first-order condition

dE [Uv (a)]
da

= Λ (ã; δv) ≡
∫ ∞
−∞
{[u′ (δv + µ− ã) + u′ (δv + µ+ ã)]} f (µ) dµ = 0.

Note that (i) Λ (0; δv) = 0, for all δv (the first result) and (ii)

d

da
Λ (a; δv) =

∫ ∞
−∞
{[u′′ (δv + µ− a) + u′′ (δv + µ+ a)]} f (µ) dµ < 0,
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for all a ≥ 0 and for all δv. These two observations together imply

Λ (0; δv) = 0 > Λ (a; δv) ,

for all a > 0, which rules out any interior solution when σγ is sufficiently large. This
completes the proof of Proposition 1.

Proof of Proposition 2

Suppose u (x) = −x2. Then we have

w̃ = 1
σγ

[
(µ+ a)2 − (µ− a)2

]
= 4µ
σγ
a,

and the auxiliary functions Φ (a;µ, δv) and Ψ (a;µ, δv) defined in the previous proof can be
simplified to become

Φ (a;µ, δv) = 4 (δv + µ) aH (w̃) ,

Ψ (a;µ, δv) = − (δv + µ+ a)2 + σγ

∫ ∞
w̃

γh (γ) dγ.

Their first-order derivatives are now given by

d

da
Φ (a;µ, δv) = 4 (δv + µ) [H (w̃) + w̃h (w̃)] .

d

da
Ψ (a;µ, δv) = −2 (δv + µ+ a)− 4µw̃h (w̃) .

It follows that

dE [Uv (a)]
da

=
∫ ∞
−∞

[
d

da
Φ (a;µ, δv) + d

da
Ψ (a;µ, δv)

]
f (µ) dµ

= 4
∫ ∞
−∞

[(δv + µ)H (w̃) + δvw̃h (w̃)] f (µ) dµ− 2 (δv + µ)

= 4
{∫ ∞
−∞

µH (w̃) f (µ) dµ+ δv

∫ ∞
−∞

H (w̃) f (µ) dµ+ δv

∫ ∞
−∞

w̃h (w̃) f (µ) dµ
}

−2 (a+ δv) (11)

We will evaluate each of the three integrals inside the curly brackets. The first one can be
expressed as7

∫ ∞
−∞

µH [w̃ (µ)] f (µ) dµ =
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ+

∫ 0

−∞
µH [w̃ (µ)] f (µ) dµ.

7Here we use the notation $ (µ) to showcase the dependence of $ on µ.
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Note that in general w̃ (µ) is an odd function, i.e.,

w̃ (µ) = 1
σγ

[u (µ− a)− u (µ+ a)] = −w̃ (−µ) .

This is true even without using the quadratic function. Define z = −µ, then
∫ 0

−∞
µH [w̃ (µ)] f (µ) dµ =

∫ 0

−∞
(−z)H [w̃ (−z)] f (−z) d (−z)

=
∫ 0

−∞
zH [−w̃ (z)] f (z) dz

= −
∫ ∞

0
µH [−w̃ (µ)] f (µ) dµ.

The second line uses the assumption that f (·) is symmetric at zero. Hence,
∫ ∞
−∞

µH [w̃ (µ)] f (µ) dµ =
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ−

∫ ∞
0

µH [−w̃ (µ)] f (µ) dµ

=
∫ ∞

0
µ {H [w̃ (µ)]−H [−w̃ (µ)]} f (µ) dµ

=
∫ ∞

0
µ {2H [w̃ (µ)]− 1} f (µ) dµ

= 2
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ−

∫ ∞
0

µf (µ) dµ, (12)

The third lines uses the assumption that H (·) is a symmetric distribution around zero, so
that H (γ) +H (−γ) = 1.

Next consider the second integral inside the brackets in (11), which is
∫ ∞
−∞

H [w̃ (µ)] f (µ) dµ =
∫ ∞

0
H [w̃ (µ)] f (µ) dµ+

∫ 0

−∞
H [w̃ (µ)] f (µ) dµ.

Define z = −µ, then
∫ 0

−∞
H [w̃ (µ)] f (µ) dµ =

∫ 0

−∞
H [w̃ (−z)] f (−z) d (−z) =

∫ ∞
0

H [−w̃ (z)] f (z) dz.

Hence,
∫ ∞
−∞

H [w̃ (µ)] f (µ) dµ =
∫ ∞

0
{H [w̃ (µ)] +H [−w̃ (µ)]} f (µ) dµ = 1

2 . (13)

Finally consider the integral
∫∞
−∞ w̃ (µ)h [w̃ (µ)] f (µ) dµ.Note that ξ (µ) ≡ w̃ (µ)h [w̃ (µ)]

is an odd function, i.e.,

ξ (−µ) = w̃ (−µ)h [w̃ (−µ)] = −w̃ (µ)h [−w̃ (µ)] = −ξ (µ) .

19



For any odd function ξ (µ) ,
∫ ∞
−∞

ξ (µ) f (µ) dµ =
∫ ∞

0
ξ (µ) f (µ) dµ+

∫ 0

−∞
ξ (µ) f (µ) dµ

=
∫ ∞

0
ξ (µ) f (µ) dµ+

∫ 0

−∞
ξ (−z) f (−z) d (−z)

=
∫ ∞

0
ξ (µ) f (µ) dµ−

∫ ∞
0

ξ (−z) f (z) dz = 0.

Hence, ∫ ∞
−∞

w̃ (µ)h [w̃ (µ)] f (µ) dµ = 0. (14)

Substituting (12)-(14) into (11) gives

dE [Uv (a)]
da

= 4
{

2
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ−

∫ ∞
0

µf (µ) dµ+ δv
2

}
− 2 (a+ δv)

= 8
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ− 4

∫ ∞
0

µf (µ) dµ− 2a.

This shows that the first-order condition for any turning points (either maximum or min-
imum) is independent of δv. In other words, all voters will make the same choices. In
addition,

dE [Uv (a)]
da

∣∣∣∣∣
a=0

= 8
∫ ∞

0
µH (0) f (µ) dµ− 4

∫ ∞
0

µf (µ) dµ = 0. (15)

This confirms that a = 0 always satisfies the first-order condition.
Next, we consider the second-order and third-order derivative of E [Uv (a)] with respect

to a, which are

d2E [Uv (a)]
da2 = 8

∫ ∞
0

µh [w̃ (µ)]
(

4µ
σγ

)
f (µ) dµ− 2

= 32
σγ

∫ ∞
0

µ2h

(
4µ
σγ
a

)
f (µ) dµ− 2.

d3E [Uv (a)]
da3 = 128

σ2
γ

∫ ∞
0

µ3h′
(

4µ
σγ
a

)
f (µ) dµ < 0. (16)

The last inequality shows that dE [Uv (a)] /da is itself a strictly concave function in a.
Suppose

d2E [Uv (a)]
da2

∣∣∣∣∣
a=0

= 2
[

16
σγ
h (0)

∫ ∞
0

µ2f (µ) dµ− 1
]
≤ 0,

which is equivalent to σγ ≥ σmin ≡ 16h (0)
∫∞

0 µ2f (µ) dµ. Then (16) implies that

d2E [Uv (a)]
da2 < 0, for all a > 0.
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This, together with (15), implies

dE [Uv (a)]
da

< 0, for all a > 0.

These show that E [Uv (a)] and dE [Uv (a)] /da are both decreasing concave functions in a
for all a > 0. A graphical illustration of dE [Uv (a)] /da is shown in Figure 3(a). Hence,
a = 0 is the unique global maximiser for all types of voters.

Next, consider the case in which

d2E [Uv (a)]
da2

∣∣∣∣∣
a=0

= 2
[

16
σγ
h (0)

∫ ∞
0

µ2f (µ) dµ− 1
]
> 0,

or equivalently σγ < σmin. This condition implies that dE [Uv (a)] /da is strictly increasing
at a = 0. Since H [w̃ (µ)] ≤ 1 for all µ,

dE [Uv (a)]
da

= 4
{

2
∫ ∞

0
µH [w̃ (µ)] f (µ) dµ−

∫ ∞
0

µf (µ) dµ
}
− 2a

≤ 2
[
2
∫ ∞

0
µf (µ) dµ− a

]
.

⇒ dE [Uv (a)]
da

< 0 for any a > 2
∫ ∞

0
µf (µ) dµ > 0.

In sum, we have learned three things about dE [Uv (a)] /da when σγ < σmin. First, it is
a strictly concave function in a ≥ 0. Second, it is equal to zero at a = 0 but is strictly
increasing at this point. Third, it will eventually turn negative when a > 2

∫∞
0 µf (µ) dµ.

By the intermediate value theorem, there exists a unique value a∗ > 0, which is strictly
less than 2

∫∞
0 µf (µ) dµ, such that

dE [Uv (a)]
da

∣∣∣∣∣
a=a∗

= 0 and d2E [Uv (a)]
da2

∣∣∣∣∣
a=a∗

< 0.

Hence, a∗ > 0 is the unique global maximiser for all types of voters. A graphically illus-
tration of this result is shown in Figure 3(b).

Applying the implicit function theorem on the first-order condition, we obtain

da∗

dσγ
= −

d2E[Uv(a)]
dadσγ

d2E[Uv(a)]
da2

.

Since the denominator is negative, da∗

dσγ
has the same sign as

d2E [Uv (a)]
dadσγ

= 8
∫ ∞

0
µh [w̃ (µ)] dw̃(µ)

dσγ
f (µ) dµ,

which is negative since dw̃(µ)/dσγ is negative for all µ > 0. This completes the proof of
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Figure 3: Illustration of Proposition 2

Proposition 2.

Proof of Proposition 3

Since UR is continuous, in any symmetric equilibrium, the optimal policy of R must satisfy
the following first-order condition given aL = −a:

dUR
daR

=[u(aR − ψ) + b− u(−a− ψ)]

×
∫ ∞
−∞

h

(
1
σγ

(u(aR − µ)− u(−a− µ))
)

1
σγ
u′(aR − µ)f(µ)dµ

+u′(aR − ψ)
∫ ∞
−∞

H

(
1
σγ

(u(aR − µ)− u(−a− µ))
)
f(µ)dµ = 0

for aR > 0, and dUR
daR
≤ 0 for aR = 0.

First, we rule out a symmetric equilibrium where aL = aR = 0. In this case,

dUR
daR

= b
∫ ∞
−∞

h(0) 1
σγ
u′(−µ) f(µ)dµ+ 1

2u
′(−ψ) > 0

since the first term is 0 and the second term is positive. Therefore, R would be better off
choosing a policy to the right of 0.

Assume the best response of R, i.e. aR(aL) is single-valued, i.e. is a function. Consider
the best response function aR(−xL) : [0, ψ] → [0, ψ]. This function is continuous due to
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continuity of UR on the relevant range. Therefore, by Brouwer’s fixed theorem, there exists
a fixed point a∗. The pair (aL, aR) = (−a∗, a∗) constitutes a symmetric equilibrium since
aL(a∗) = −a∗ by definition and aR(−a∗) = a∗ by symmetry.

Assume now that parties are purely office-motivated. Their payoff is b if they win the
election, and 0 otherwise. Parties are therefore maximizing their probability of winning.
Given aL = −a, party R maximizes

UR(−a, aR) = b
∫ ∞
−∞

H

(
1
σγ

(u(aR − µ)− u(−a− µ))
)
f(µ)dµ.

The first-order condition is given by

dUR
daR

= b
∫ ∞
−∞

h

(
1
σγ

(u(aR − µ)− u(−a− µ))
)

1
σγ
u′(aR − µ)f(µ)dµ = 0

for aR > 0, and dUR
daR
≤ 0 for aR = 0.

For any aL = −a < 0, dUR
daR

< 0 for all aR ≥ 0 since the values of µ for which u′(aR − µ)
is negative are more heavily weighted. Therefore, the only potential equilibrium is aR =
aL = 0. This is indeed an equilibrium since the first-order condition is satisfied:

b
∫ ∞
−∞

h (0) 1
σγ
u′(−µ)f(µ)dµ = 0,

and since dUR(0,aR)
daR

< 0 for all aR > 0. This completes the proof.
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