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A. Proofs

This section contains the proofs of all the theoretical results mentioned in the main paper, except

Proposition 1. The proof of Proposition 1 is shown separately in Section B of this document.

Proof of Lemma 1

We begin by noting that (s; b;m) has a joint normal distribution with mean vector �y and

covariance matrix �y given by

�y =

266664
�s

�b

�m

377775 and �y =

266664
�2s ! �s

! �2b �b

�s �b �2m

377775 ;

where �m = �s + �b; ! � �s;b�s�b and �
2
m = var (m) = �s + �b + �

2
": By Theorem B.7 in Greene

(2012, p.1042), the distribution of (s; b) conditional on m is a bivariate normal distribution with

mean vector

�0 =

264 �s

�b

375+ (m� �m)
�2m

264 �s

�b

375 ;
and covariance matrix

�0 =

264 �2s !

! �2b

375� 1

�2m

264 �s

�b

375� �s �b

�
:

Consequently, the marginal distribution of s in the voters�updated belief is a normal distribution

with mean

E (s j m) = �s +
�s
�2m

(m� �m) ;

which is the the �rst element in �0; and variance

var (s j m) = �2s �
�2s
�2m

;

which is the (1; 1)th element of �0: This completes the proof of Lemma 1.
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Proof of Corollary 1

Part (i) By Proposition 1, if � > 
h (0) =2; then the extent of equilibrium polarisation is given

by

x�eq =
2�� 
h (0)
4h (0)�+ 2

: (A.1)

Substituting h (0) = 1=
�e�p2�� into (A.1) and rearranging terms give

x�eq =
2
p
2��e� � 


2
�
2�+

p
2�e�� =

p
2�� (e� � �min)
2�+

p
2�e� ; where �min �




2
p
2��

: (A.2)

Di¤erentiating this with respect to e� yields
dx�eq
de� =

p
2��

�
2�+

p
2��min

��
2�+

p
2�e��2 > 0: (A.3)

Part (ii) Di¤erentiating (A.1) with respect to � yields

dx�eq
d�

=
1 + 
 [h (0)]2

[2h (0)�+ 1]2
> 0:

The upper bound is obtained by considering the limit of x�eq when �!1; which is

lim
�!1

x�eq = lim
�!1

�
2�� 
h (0)
4h (0)�+ 2

�
=

1

2h (0)
=

r
�

2
� e�:

This completes the proof.

Proof of Lemma 2

The coe¢ cient  is de�ned as

 � Cov (s;m)

var (m)
=

�s

�s + �b + �
�1
"
: (A.4)

Using (A.4), we can get

d 2

d� "
= 2 � d 

d� "
=
2

�2"

�2s�
�s + �b + �

�1
"

�3 > 0:
Furthermore, it is clear that varp(m) = b�s + b�b + ��1" is decreasing in � ". This completes the

proof.
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Proof of Proposition 2

The main ideas of the proof have been explained in the main text. Here we only need to verify

certain details. From (A.4), we can get

ln 2 = 2 ln�s � 2 ln
�
�s + �b + �

�1
"

�
) d ln 2 =

2

�s + �b + �
�1
"

d� "
�2"

) d ln 2

d ln �"
=
2

� "
� 1

�s + �b + �
�1
"
=
2

� "
� 1

var (m)
;

which is equation (15) in the main text. Similarly,

d ln varp (m) = �
1b�s + b�b + ��1" d� "

�2"

) d ln varp (m)

d ln � "
= � 1

� "
� 1b�s + b�b + ��1" = � 1

� "
� 1

varp (m)
;

which is equation (16) in the paper. Substituting (15) and (16) into (14) gives

d ln e�2
d ln � "

=
1

� "
�
�

2

var (m)
� 1

varp (m)

�

) de�2
d� "

=
e�2
�2"
�
�
2varp (m)� var (m)
var (m) � varp (m)

�
? 0 i¤ 2varp (m) ? var (m) :

This completes the proof.

Proof of Corollary 2

According to Proposition 3,

de�2
d� "

= 2e� � de�
d� "

? 0 i¤ 2varp (m) ? var (m) :

The condition 2varp (m) ? var (m) can be equivalently expressed as

2
�b�s + b�b�+ 2��1" ? �s + �b + �

�1
"

, ��1" ? �s + �b � 2
�b�s + b�b� :
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If 2
�b�s + b�b� � �s+�b; then the above condition implies that for any � " > 0; 2varp (m) > var (m)

must be true. Hence,
de�2
d� "

> 0 for all � " > 0:

This establishes the result in part (a).

But if �s + �b > 2
�b�s + b�b� ; then we have 2varp (m) ? var (m) if and only if

� " 7 � 0" �
1

�s + �b � 2
�b�s + b�b� :

This in turn implies
de�
d� "

? 0 i¤ � " 7 � 0":

This establishes the result in part (b).

Proof of Lemma 3

As is evident from (A.4),  < 0 if and only if �s = �2s + �s;b�s�b < 0: Provided that �s > 0;

�b > 0 and �s;b 2 (�1; 1) ; this is true if and only if

�1 < �s;b < �
�s
�b
:

The assumption �s < �b is necessary to ensure that this range is nonempty. This completes the

proof.

Proof of Proposition 3

Straightforward di¤erentiation based on (A.4) yields

d 2

d�b
= 2 � d 

d�b
= � 2�2s�

�s + �b + �
�1
"

�3 < 0;
d 2

d�s
= 2 � d 

d�s
=

2�s
�
�b + �

�1
"

��
�s + �b + �

�1
"

�3 ? 0 i¤ �s
�
�b + �

�1
"

�
? 0:

Note that the sum �s + �b must be positive because �s + �b = var (s+ b) in the voters�initial

belief. Therefore, �s and �b cannot be both negative. This means �b + ��1" > 0 must be true

under de�ant learning and it is not possible to have �s
�
�b + �

�1
"

�
> 0 when �s < 0: Therefore,

under de�ant learning,  2 is strictly decreasing in �s: This completes the proof.
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We now explain how to relate changes in f�s; �bg to those in
�
�s; �b; �s;b

	
: Recall the de�nition

of f�s; �bg ; i.e.,

�s = �2s + �s;b�s�b; and �b = �2b + �s;b�s�b:

Totally di¤erentiating �s and �b with respect to
�
�s; �b; �s;b

	
gives

d�s =
�
2�s + �s;b�b

�
d�s + �s;b�sd�b + �s�bd�s;b; (A.5)

d�b = �s;b�bd�s +
�
2�b + �s;b�s

�
d�b + �s�bd�s;b: (A.6)

Using these equations, we can derive situations in which �s changes but �b is held �xed (and vice

versa). We will give two speci�c examples to illustrate this point.

Suppose there is no change in �b so that d�b = 0: Then according to (A.6),

d�b = 0 if and only if �s�bd�s;b = ��s;b�bd�s:

Substituting this into (A.5) gives d�s = 2�sd�s: Therefore, when d�b = 0;

d�b = 0 and d�s ? 0 , d�s ? 0 and d�s;b = �
�s;b
�s

d�s:

Suppose now there is no change in �s;b so that d�s;b = 0: Then according to (A.6), d�b = 0 if

and only if

d�b = �
�s;b�b

2�b + �s;b�s
d�s:

Substituting this into (A.5) gives

d�s =
�
2�s + �s;b�b

�
d�s �

�2s;b�s�b

2�b + �s;b�s
d�s

=
4�s�b + 2�s;b

�
�2s + �

2
b

�
2�b + �s;b�s

d�s:

In the special case of �s;b = 0; �s = �2s and �b = �2b : It follows that

d�b = 0 and d�s ? 0 , d�s ? 0 and d�b = 0:

This concludes the proof of Proposition 3.
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Proof of Lemma 4

Using the de�nition of Cov (s;m) and var (m) ; we can rewrite (A.4) as

 =
Cov (s;m)

var (m)
=

�2s + �s;b�s�b

�2s + �
2
b + �

2
" + 2�s;b�s�b

: (A.7)

Di¤erentiating this with respect to �s;b gives

d 

d�s;b
=

�s�b
var (m)

� Cov (s;m)

[var (m)]2
� 2�s�b =

�s�b [var (m)� 2Cov (s;m)]
[var (m)]2

;

where

var (m)� 2Cov (s;m) = �2b + �
2
" � �2s:

Hence,
d 2

d�s;b
= 2 

d 

d�s;b
? 0 i¤ Cov (s;m)

�
�2b + �

2
" � �2s

�
? 0:

Suppose �b � �s: Then by Lemma 3, de�ant learning is not possible, so it must be the case

that �s = Cov (s;m) > 0: It follows immediately that

d 2

d�s;b
? 0 i¤ �2b + �

2
" ? �2s:

Suppose �b > �s; which implies �2b + �
2
" � �2s > 0: Hence,

d 2

d�s;b
? 0 , Cov (s;m) = �s

�
�s + �s;b�b

�
? 0 , �s;b � �

�s
�b
:

This completes the proof of Lemma 4.
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Proof of Lemma 5

Pick any �v 2 R: Conditional on m; voter v�s expected utility if R wins is

E
�
U
�
x�eq; �v; s

�
j m
�

= �E
h�
�v + s� x�eq

�2 j mi
= �E

h�
�v +  m� x�eq + s�  m

�2 j mi
= �E

h�
�v +  m� x�eq

�2 � 2 ��v +  m� x�eq
�
(s�  m) + (s�  m)2 j m

i
= �E

h�
�v +  m� x�eq

�2 j mi� var (s j m)
= �

n�
�v � x�eq

�2
+ 2

�
�v � x�eq

�
 m+ ( m)2 + var (s j m)

o
:

The second-to-last line uses the fact that E (s j m) =  m; hence

E
��
�v +  m� x�eq

�
(s�  m) j m

�
=
�
�v +  m� x�eq

�
E [(s�  m) j m] = 0

and E
h
(s�  m)2 j m

i
= var (s j m) :

Similarly, the voter�s expected utility if L wins is

E
�
U
�
�x�eq; �v; s

�
j m
�
= �

n�
�v + x

�
eq

�2
+ 2

�
�v + x

�
eq

�
 m+ ( m)2 + var (s j m)

o
:

Under the voters�prior belief, the signal m follows a normal distribution with mean zero and

variance var (m) : Therefore,  m is a normal random variable with mean zero and variance

var ( m) �
�
�y
�2
=  2var (m) : Let G (�) be the corresponding cumulative distribution function.

Before m is realised, the voter�s expected utility is

W
�
x�eq; �v

�
=

Z 1

0
E
�
U
�
x�eq; �v; s

�
j m
�
dG ( m) +

Z 0

�1
E
�
U
�
�x�eq; �v; s

�
j m
�
dG ( m)

= �
�
1

2

�
�v � x�eq

�2
+
1

2

�
�v + x

�
eq

�2
+ var (s j m)

�
�
�
2
�
�v � x�eq

� Z 1

0
 mdG ( m) + 2

�
�v + x

�
eq

� Z 0

�1
 mdG ( m)

�
�
Z 1

�1
( m)2 dG ( m)

= 4x�eq

Z 1

0
 mdG ( m)�

h
�2v +

�
x�eq
�2
+ var (s j m) +  2var (m)

i
: (A.8)
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The last line uses the fact that G (�) is the cdf of a symmetric distribution around zero, hence

Z 1

�1
 mdG ( m) = 0 and

Z 0

�1
 mdG ( m) = �

Z 1

0
 mdG ( m) :

Using the formula,

Z 1

0
x2n+1 exp

�
�Ax2

�
dx =

n!

2An+1
; for A > 0 and n = 0; 1; 2; :::;

we can get

Z 1

0
 mdG ( m) =

1p
2��y

Z 1

0
 m exp

(
�
�
2
�
�y
�2��1

( m)2
)
d ( m) =

�yp
2�
:

Substituting this into (A.8) gives

W
�
x�eq; �v

�
= 2

r
2

�
x�eq�

y �
�
x�eq
�2 � ��2v + var (s j m) +  2var (m)� : (A.9)

Finally, by the law of total variance, we can get

var (s j m) +  2var (m) = ��1s : (A.10)

To see this, �rst recall that �s in the voters�subjective prior belief is normalised to zero. Hence,

the variance of s in their prior belief is given by

��1s = var (s) = E
�
s2
�
= E

�
E
�
s2 j m

��
;

where the outer expectation is taken with respect to the distribution of m: It follows that

��1s = E
n
var (s j m) + [E (s j m)]2

o
= var (s j m) +  2E

�
m2
�

= var (s j m) +  2var (m) :

The second line uses the facts that var (s j m) is a deterministic constant according to equation

(4) in the main text and E (s j m) =  m. The last line uses the fact that E (m) = 0: This proves
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(A.10). Substituting (A.10) into (A.9) gives

W
�
x�eq; �v

�
=

"
2

r
2

�
�y � x�eq

#
x�eq �

�
�2v + �

�1
s

�
:

This completes the proof.

Proof of Proposition 4

As mentioned in the main paper, polarisation is welfare-improving if and only if

0 � x�eq =
2�� 
h (0)
4h (0)�+ 2

� 2
r
2

�
�y: (A.11)

The second inequality in (A.11) can be rewritten as

2

r
2

�
�y � x�eq =

2�� 
h (0)
4h (0)�+ 2

, 2
p
2�y [4h (0)�+ 2] � 2

p
���

p
�
h (0)

, 4
p
2�y +

p
�
h (0) � 2

hp
� � 4

p
2�yh (0)

i
�:

There are two possible cases: If
p
� � 4

p
2�yh (0) � 0; or equivalently,

e�
�y
=

s
varp (m)

var (m)
� 4

�
;

then the second inequality in (A.11) is automatically satis�ed for all � � 0. This means

W
�
x�eq; �v

�
�W (0; �v) for any x�eq � 0:

But if
p
� � 4

p
2�yh (0) > 0; or equivalently,

e�
�y
=

s
varp (m)

var (m)
>
4

�
;

then the second inequality in (A.11) holds if and only if

� � 4
p
2�y +

p
�
h (0)

2
�p
� � 4

p
2�yh (0)

� = p
�
�
8�y � e� + 
�

2
p
2 (�e� � 4�y) :

Obviously, the second part of this proposition is meaningful only if there exists
�

; �; �y; e�	

that satisfy all the conditions. Speci�cally, let S be the set of
�

; �y; e�� 2 R3+ such that e� > 4�y=�
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and p
�
�
8�y � e� + 
�

2
p
2 (�e� � 4�y) � �min �




2
p
2�e� :

We now show that this set is non-empty. Pick any 
 � 0: For any e� > 0 and �y > 0 that satis�es
�e� > 4�y, the above inequality can be rewritten as

�e� �8�y � e� + 
� � 

�
�e� � 4�y�

, 8��y � e�2 + 4
�y � 0: (A.12)

Note that (A.12) is true for all e� > 0 and �y > 0; therefore S is non-empty. This concludes the
proof.

Proof of Proposition 5

Suppose var (m) = varp (m) ; which implies �y = e�: Then equation (22) in the main paper can
be rewritten as

W
�
x�eq; �v

�
=

"
2

r
2

�
e� � x�eq

#
x�eq �

�
�2v + �

�1
s

�
;

for any x�eq � 0; or equivalently for any e� � �min: Di¤erentiating this with respect to � " yields

dW
�
x�eq; �v

�
d� "

=

"
2

r
2

�
� de�
d� "

�
dx�eq
d� "

#
x�eq +

"
2

r
2

�
e� � x�eq

#
dx�eq
d� "

= 2

r
2

�
� x�eq �

de�
d� "

+ 2

"r
2

�
e� � x�eq

#
dx�eq
d� "

= 2

(r
2

�
� x�eq +

"r
2

�
e� � x�eq

#
dx�eq
de�

)
de�
d� "

: (A.13)

The last line use the decomposition

dx�eq
d� "

=
dx�eq
de� � de�

d� "
:

By Proposition 2, de�=d� " > 0 when var (m) = varp (m) : Hence, we will focus on the expression

inside the curly brackets in (A.13), which involves both x�eq and its derivative with respect to e�:
As shown in the proof of Corollary 1, x�eq can also be expressed as

x�eq (e�) = max
(p

2�� (e� � �min)
2�+

p
2�e� ; 0

)
; where �min �




2
p
2��

:
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The notation x�eq (e�) highlights the dependence of x�eq on e�: Also, for any e� > �min;

dx�eq (e�)
de� =

p
2��

�
2�+

p
2��min

��
2�+

p
2�e��2 > 0: (A.14)

From this equation, it is obvious that

d2x�eq (e�)
de�2 < 0; for any e� > �min; (A.15)

which means x�eq (e�) is strictly increasing and strictly concave when it is strictly positive. This
also implies that for any e� > �min > 0;

dx�eq (e�)
de� �

p
2��

2�+
p
2��min

<

p
2�

2
=

r
�

2
: (A.16)

These facts will be useful later on.

De�ne an auxiliary function � : [�min;1)! R according to

� (e�) �r 2

�
� x�eq (e�) +

"r
2

�
e� � x�eq (e�)

#
dx�eq (e�)
de� ; (A.17)

which is the expression inside the curly brackets in (A.13). Since x�eq (�min) = 0; we can get

� (�min) =

r
2

�
�min �

dx�eq (e�)
de�

����e�=�min > 0:
For e� � �min; the expression in the squared brackets in (A.17) can be expanded to become

r
2

�
e� � x�eq (e�) =

r
2

�
e� � p2�� (e� � �min)

2�+
p
2�e�

=

r
2

�

�e� � �� (e� � �min)
2�+

p
2�e�

�
=

r
2

�

"p
2�e�2 � (� � 2)�e� + ���min

2�+
p
2�e�

#
:

We will determine the sign of this expression by considering the quadratic equation:

p
2�e�2 � (� � 2)�e� + ���min = 0: (A.18)

There are three possible scenarios, which are shown in Figure A1.
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Figure A1.

Case 1 Suppose equation (A.18) has no real roots. This happens when

(� � 2)2 �2 � 4
p
2� � ���min = (� � 2)2 �2 � 2�
 < 0:

It follows that
p
2�e�2 � (� � 2)�e� + ���min > 0 for any e� � �min; which is equivalent to

r
2

�
e� � x�eq (e�) > 0:

Combining this with (A.17) yields

� (e�) �r 2

�
� x�eq (e�) +

"r
2

�
e� � x�eq (e�)

#
dx�eq (e�)
de�| {z }
(+)

> 0 (A.19)

)
dW

�
x�eq; �v

�
d� "

= 2� (e�) � de�
d� "

> 0; for any e� � �min:
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Case 2 Suppose (A.18) has a repeated real root, which happens when (� � 2)2 �2 = 2�
: Let

�r > �min > 0 be the repeated root. Then we have

r
2

�
�r = x�eq (�r) and

r
2

�
e� � x�eq (e�) > 0;

for any e� � �min and e� 6= �r: When evaluated at e� = �r;

� (�r) �
r
2

�
� x�eq (�r) > 0:

For any e� � �min and e� 6= �r; (A.19) will continue to hold. This again implies that W
�
x�eq; �v

�
is strictly increasing in � " whenever x�eq � 0:

Case 3 Suppose (A.18) has two distinct real roots, denoted by �0 and �00: This happens when

(� � 2)2 �2 > 2�
: As shown in Figure A1, both roots must be strictly greater than �min > 0:

Without loss of generality, suppose �00 > �0 > �min > 0: From Figure A1, it is obvious that for

any e� 2 [�min; �0] [ [�00;1) ; we have
r
2

�
e� � x�eq (e�) � 0;

with strictly equality holds only at �0 and �00: Therefore, for these values of e�; we have � (e�) > 0.
For any e� 2 (�0; �00) ; r

2

�
e� � x�eq (e�) < 0:

Di¤erentiating (A.17) with respect to e� gives
�0 (e�) = "2r 2

�
�
dx�eq (e�)
de�

#
dx�eq (e�)
de�| {z }
(+)

+

"r
2

�
e� � x�eq (e�)

#
| {z }

(�)

d2x�eq (e�)
de�2| {z }
(�)

:

Recall that x�eq (e�) is strictly increasing and strictly concave when e� � �min; therefore its second-

order derivative is strictly negative. By (A.16),

dx�eq (e�)
de� <

r
�

2
' 1:253 < 2

r
2

�
' 1:596:

Hence, the expression insider the �rst squared bracket is strictly positive. This means � (e�) is
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strictly increasing within the range (�0; �00) ; therefore

� (e�) > � ��0� =r 2

�
� x�eq

�
�0
�
> 0; for any e� 2 ��0; �00� :

Taken together, these prove that when (� � 2)2 �2 > 2�
; � (e�) > 0 for any e� � �min: As a result,

dW
�
x�eq; �v

�
d� "

= 2� (e�) � de�
d� "

> 0; for any e� � �min:

This concludes the proof of Proposition 5.

Proof of Proposition 6

Part (a)

Di¤erentiating equation (22) in the main paper with respect to � " gives

dW
�
x�eq; �v

�
d� "

= 2

"r
2

�
�y � x�eq

#
dx�eq
d� "

+ 2

r
2

�
� x�eq

d�y

d� "
: (A.20)

To derive the derivative of �y with respect to � "; �rst recall

�
�y
�2
=  2var (m) =

�
Cov (s;m)

var (m)

�2
var (m) =

�2s
�s + �b + �

�1
"
:

Di¤erentiating this with respect to � " gives

2�y � d�
y

d� "
=
1

�2"

�2s�
�s + �b + �

�1
"

�2 = 1

�2"

�
�y
�2

�s + �b + �
�1
"

) d�y

d� "
=

1

2�2"

�y

�s + �b + �
�1
"
=

1

2�2"

�y

var (m)
> 0: (A.21)

Note that this derivative is independent of �: It follows that the second term in (A.20) must be

strictly positive when x�eq > 0:

The derivative of x�eq with respect to � " can be broken down into two parts:

dx�eq
d� "

=
dx�eq
de�| {z }
(+)

� de�
d� "

: (A.22)

As shown in Corollary 1, x�eq is strictly increasing in e� when it is strictly positive. The second
15



part can be derived as follows. Recall that

e�2 =  2varp (m) =

�
Cov (s;m)

var (m)

�2
varp (m) =

�2s

�b�s + b�b + ��1" ��
�s + �b + �

�1
"

�2 :

Taking the logarithm of both sides yields

2 ln e� = ln�2s + ln�b�s + b�b + ��1" �� 2 ln ��s + �b + ��1" � :
Di¤erentiating both sides with respect to � " gives

2e� de�
d� "

= � 1

�2"

�
1b�s + b�b + ��1" � 2

�s + �b + �
�1
"

�

) de�
d� "

=
1

2�2"
� e�
varp (m)

�
2varp (m)

var (m)
� 1
�
: (A.23)

Note that neither (A.21) nor (A.23) depend on �: Therefore, on the right side of (A.20), only x�eq

and its derivative with respect to e� are dependent on �:
In particular, we know from Corollary 1 that

lim
�!1

x�eq =

r
�

2
e�:

Using (A.14) we can get

lim
�!1

�
dx�eq
de�

�
=

r
�

2
:

These imply

lim
�!1

"
dW

�
x�eq; �v

�
d� "

#
= 2

"r
2

�
�y �

r
�

2
e�#r�

2
� de�
d� "

+ 2

r
2

�
�
r
�

2
e� � d�y

d� "

= 2

��
�y � �

2
e�� � de�

d� "
+ e� � d�y

d� "

�
: (A.24)

The two standard deviations e� and �y can be related using
e� = � (� ";�)�

y; where � (� ";�) �

s
varp (m)

var (m)
=

sb�s + b�b + ��1"
�s + �b + �

�1
"

> 0: (A.25)

The notation � (� ";�) highlights the dependence of � on � " and � =
�
�s; �b; b�s; b�b� ; but for now

we will simply write this as �:

16



Substituting (A.21), (A.23) and (A.25) into (A.24) gives

lim
�!1

"
dW

�
x�eq; �v

�
d� "

#
=

� �
�
�y
�2

�2"

��
1� �

2
�
�
� 1

varp (m)

�
2�2 � 1

�
+

1

var (m)

�

=
� �
�
�y
�2

�2"varp (m)

h�
1� �

2
�
� �
2�2 � 1

�
+ �2

i
= �

� �
�
�y
�2

�2"varp (m)

�
��3 � 3�2 � �

2
� + 1

�
:

Note that cubic equation

� (�) � ��3 � 3�2 � �

2
� + 1 = 0

has three distinct real roots: -0.6322, 0.4382 and 1.1490; attains a local maximum at � = �0:1994

and a local minimum at � = 0:8360: In particular, � (�) is strictly positive and strictly increasing

for any � > 1:1490: It follows that

lim
�!1

"
dW

�
x�eq; �v

�
d� "

#
< 0 when � (� ";�) > 1:149:

Using (A.25), we can rewrite the second inequality as

b�s + b�b + ��1"
�s + �b + �

�1
"

> (1:149)2 ' 1:320

, b�s + b�b � 1:32 (�s + �b) > 0:32��1"
� " >

0:32b�s + b�b � 1:32 (�s + �b) � � c > 0:

This proves that when b�s + b�b > 1:32 (�s + �b) ;
lim
�!1

"
dW

�
x�eq; �v

�
d� "

#
< 0 when � " > � c:

This establishes the result in part (a).

Part (b)

The desired result can be obtained by establishing the facts below:

Fact 1 For any given
�
�s; �b; b�s; b�s� ; the parties�perceived uncertainty e�2 converges to the

limit e�21 when � " increases inde�nitely.

17



Fact 2 Suppose �b � 0 and b�s + b�s > �2min: Then there exists a unique threshold value �c � 0

such that e�21 > �2min for any �s > �c:

These two facts together ensure that, when � " approaches in�nity, the extent of policy polar-

isation x�eq (e�) will tend to the limit x�eq (e�1) which is strictly positive. According to (A.14) in
the proof of Proposition 5, x�eq (e�1) > 0 implies dx�eq=de� > 0 when evaluated at e�1.
Fact 3 For any given

�
�s; �b; b�s; b�s� ; lim

�"!1

�
d�y=d� "

�
> 0:

Fact 4 As shown in Corollary 2 part (b), whenever �s+�b > 2
�b�s + b�b� ; there exists a unique

threshold value � 0" > 0 such that

de�
d� "

< 0 for any � " > � 0":

Fact 5 Suppose �s > 0 and �s + �b > (�=2)
2
�b�s + b�b� : Then there exists a unique threshold

value � 00" > 0 such that r
2

�
�y � x�eq (e�) > 0 for any � " > � 00" :

These �ve facts are valid when �s > 0; �b � 0; b�s+b�b > �2min and �s+�b > (�=2)
2
�b�s + b�b� :

Taken together, they imply

lim
�"!1

"
dW

�
x�eq; �v

�
d� "

#

= 2 lim
�"!1

 r
2

�
�y � x�eq

!
| {z }

(+)

� lim
�"!1

�
de�
d� "

�
| {z }

(�)

� lim
�"!1

�
dx�eq
de�

�
| {z }

(+)

+ 2

r
2

�
� x�eq (e�1)| {z }

(+)

� lim
�"!1

�
d�y

d� "

�
| {z }

=0

< 0

and therefore establish the desired result.

Fact 1 follows immediately from the de�nition of e�2; i.e.,
e�2 � �Cov (s;m)

var (m)

�2
varp (m) =

�2s

�b�s + b�b + ��1" ��
�s + �b + �

�1
"

�2

) lim
�"!1

e�2 = �2s

�b�s + b�b�
(�s + �b)

2 � e�21:
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Note that e�21 > �2min if and only if

�2s

�b�s + b�b� > �2min (�s + �b)
2

,
�b�s + b�b � �2min��2s � 2�2min�b�s � �2min�2b > 0: (A.26)

Consider the quadratic equation

�b�s + b�b � �2min��2s � 2�2min�b�s � �2min�2b = 0:
The discriminant of which is given by � = 4

�b�s + b�b��2min�2b > 0; hence it has two distinct real
roots. The assumption b�s + b�b > �2min > 0 implies that the product of the two roots is negative.

In other words, there is one positive and one negative real root. Since we focus on positive values

of �s; we will consider the positive root alone which is given by

�c =

�min�b

�
�min +

r�b�s + b�b��b�s + b�b � �2min � 0; when �b � 0: (A.27)

It follows that for any �s > �c � 0; (A.26) holds and hence e�21 > �2min: This establishes Fact 2.

Fact 3 follows immediately from (A.21), which states that

d�y

d� "
=

1

2�2"

�y

�s + �b + �
�1
"
=

1

2�2"

�s�
�s + �b + �

�1
"

� 3
2

) lim
�"!1

�
d�y

d� "

�
= 0:

The last step is to establish Fact 5. According to Corollary 1,

x�eq (e�) �r�

2
e�;

for any given e�: Using this, we can get
r
2

�
�y � x�eq (e�) �

r
2

�
�y �

r
�

2
e�

=

r
2

�

�
�y � �

2
e��

=

r
2

�
 

�p
var (m)� �

2

q
varp (m)

�
:

19



Note that
p
var (m) � �

2

p
varp (m) if and only if

var (m) = �s + �b + �
�1
" �

��
2

�2
varp (m) =

��
2

�2 �b�s + b�b + ��1" �

, �s + �b �
��
2

�2 �b�s + b�b� � ���
2

�2
� 1
�
��1"

, � " �
�
�
2

�2 � 1
�s + �b �

�
�
2

�2 �b�s + b�b� � � 00" > 0:

The last line uses the assumption that �s + �b > (�=2)
2
�b�s + b�b� : Therefore, if �s > 0 so that

 > 0; we have r
2

�
�y � x�eq (e�) > 0 whenever � " � � 00" :

This proves Fact 5.

Note that if �b = b�b = 0; so that �s = �2s and b�s = b�2s; then e�21 = b�2s and the positive root
in (A.27) becomes �c = 0: It follows that

lim
�"!1

"
dW

�
x�eq; �v

�
d� "

#
< 0 if b�s > �min and �s >

�

2
� b�s:

This establishes the result in part (b) and concludes the proof of Proposition 6.
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B. Proof of Proposition 1

B1. Preliminaries

The purpose of this subsection is twofold: (i) To introduce some additional notations that are

frequently used in the proof and (ii) to establish an intermediate result. De�ne an auxiliary

function fWR : R2 ! R according to

fWR (xR;xL) �

8>>>><>>>>:

=2 if xR = xL;

�R (xR;xL) if xR > xL;

	R (xR;xL) if xR < xL;

�R (xR;xL) �
h
(xL � �)2 � (xR � �)2 + 


i
[1�H (x)] ;

	R (xR;xL) �
h
(xL � �)2 � (xR � �)2 + 


i
H (x) ;

where x = (xL + xR) =2 and H (�) is the cumulative distribution function of N
�e�; e�2� with e�

normalised to zero. Then party R�s expected utility can be expressed as

WR (xR;xL) = fWR (xR;xL)� (xL � �)2 ;

Obviously the term � (xL �  R)2 is irrelevant for R�s policy choices. Hence, it su¢ ce to focus onfWR (xR;xL) ; which we will refer to as R�s �e¤ective�expected utility. By the same token, party

L�s e¤ective expected utility is given by

fWL (xL;xR) =

8>>>><>>>>:

=2 if xR = xL;

�L (xL;xR) if xR > xL;

	L (xL;xR) if xR < xL;

where

�L (xL;xR) �
h
(xR + �)

2 � (xL + �)2 + 

i
H (x) ;

	L (xL;xR) �
h
(xR + �)

2 � (xL + �)2 + 

i
[1�H (x)] :

It is important to note that both �R (xR;xL) and �L (xL;xR) are continuous at xR = xL even

when fWR (xR;xL) and fWL (xL;xR) are not (due to the discontinuity of the winning probability

function at xR = xL).
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Let BR (xL) denote R�s best-response correspondence under a given xL 2 R; i.e.,

BR (xL) � argmax
xR2R

nfWR (xR;xL)
o
:

Party L�s best-response correspondence BL (xR) is similarly de�ned.

Let (x�L; x
�
R) 2 R2 be a pure-strategy Nash equilibrium of the voting game, so that x�R 2

BR (x�L) and x�L 2 BL (x�R) : At this stage, we do not con�ne ourselves to symmetric equilibria. In

particular, the results presented in this and the next subsections are valid even if x�R 6= x�L: We

begin with an intermediate result which speci�es the relevant range of x�R and x
�
L in any kind

of equilibrium under quadratic utility for the political parties. This result is well-known in the

existing literature and is often stated without proof. We include the proof here for the sake of

completeness.

Lemma B1 Any voting equilibrium (x�L; x
�
R) ; if exists, must satisfy �� � x�L � x�R � �:

Proof of Lemma B1 The proof of Lemma B1 is organised into three main parts.

Part I For any xL 2 R; xR 2 BR (xL) implies

��
q
(xL � �)2 + 
 � xR � �+

q
(xL � �)2 + 
: (B.1)

Similarly, for any xR 2 R; xL 2 BL (xR) implies

���
q
(xR + �)

2 + 
 � xL � ��+
q
(xR + �)

2 + 
: (B.2)

Proof of Part I Fix xL 2 R: If R chooses xR = xL, then its e¤ective expected utility is

fWR (xL;xL) =



2
� 0:

Hence, it is never optimal for R to choose any xR that yields a negative e¤ective expected utility.

In other words, any xR 2 BR (xL) must satisfy

(xL � �)2 � (xR � �)2 + 
 � 0 (B.3)
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which is equivalently to (B.1). The condition in (B.2) can be obtained by applying the same

argument on party L: �

Part II Any voting equilibrium (x�L; x
�
R) ; if exists, must satisfy x

�
R 2 [��; �] and x�L 2 [��; �] :

Proof of Part II We begin by showing that if x�R > �, then either R or L will have an incentive

to deviate. Hence, in equilibrium it must be the case that x�R � �: Using this, we can prove that

x�L � �: The proof that x�L � �� and x�R � �� is largely similar and hence omitted.

Suppose the contrary that x�R > �: Then there are four exhaustive and mutually exclusive

scenarios: (i) x�R > � > x�L; (ii) x
�
R > x�L � �; (iii) x�R = x�L > � and (iv) x�L > x�R > �: It should

be understood that all (x�L; x
�
R) considered below satisfy the inequalities in (B.1) and (B.2), so

that (B.3) and

(xR + �)
2 � (xL + �)2 + 
 � 0 (B.4)

are satis�ed.

Scenario (i) Suppose x�R > � > x�L: Then party R�s e¤ective expected utility is given by

�R (x
�
R; x

�
L) =

h
(x�L � �)

2 � (x�R � �)
2 + 


i�
1�H

�
1

2
(x�R + x

�
L)

��
:

If R lowers its policy choice to �; then its e¤ective expected utility becomes

�R (�; x
�
L) =

h
(x�L � �)

2 + 

i�
1�H

�
1

2
(�+ x�L)

��
>

h
(x�L � �)

2 � (x�R � �)
2 + 


i�
1�H

�
1

2
(�+ x�L)

��
�

h
(x�L � �)

2 � (x�R � �)
2 + 


i�
1�H

�
1

2
(x�R + x

�
L)

��
= �R (x

�
R; x

�
L) :

The third line uses (B.3) and the fact that H (�) = 1�H (�) is strictly decreasing. This shows that

R will have an incentive to deviate to xR = �: Hence, x�R > � > x�L cannot be an equilibrium.

Scenario (ii) Suppose x�R > x�L � �; which implies that 12 (x
�
R + x

�
L) > � > e� = 0: Therefore,

we have

H

�
1

2
(x�R + x

�
L)

�
> H (0) =

1

2
(B.5)
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) 1�H
�
1

2
(x�R + x

�
L)

�
<
1

2
: (B.6)

If x�R > x�L � �; then R�s e¤ective expected utility is

�R (x
�
R;x

�
L) =

h
(x�L � �)

2 � (x�R � �)
2 + 


i�
1�H

�
1

2
(x�R + x

�
L)

��
:

Note that x�R > x�L � � also implies (x�R � �)
2 > (x�L � �)

2 : Combining this, (B.6) and 
 � 0

gives

�R (x
�
R;x

�
L) < 


�
1�H

�
1

2
(x�R + x

�
L)

��
� 


2
;

where 
=2 is R�s e¤ective expected utility when choosing xR = x�L: This gives R an incentive to

switch to xR = x�L:

Scenario (iii) Suppose x�R = x�L > �; which again implies (B.5). Suppose now R lowers its

policy choice to �: By doing so, R�s e¤ective utility becomes

	R (�;x
�
L) =

h
(xL � �)2 + 


i
H

�
1

2
(�+ x�L)

�
> 
H

�
1

2
(�+ x�L)

�
� 


2
:

The last inequality uses (B.5). Thus R will deviate from xR = x�L > � to xR = �:

Scenario (iv) Suppose x�L > x�R > �: We now show that party L will have an incentive to

deviate. Party L�s e¤ective expected utility under x�L > x�R > � is

	L (x
�
L;x

�
R) �

h
(x�R + �)

2 � (x�L + �)
2 + 


i�
1�H

�
1

2
(x�R + x

�
L)

��
:

Note that x�L > x�R > � > �� implies (x�L + �)
2 > (x�R + �)

2 : Using this and (B.6) gives

	L (x
�
L;x

�
R) < 


�
1�H

�
1

2
(x�R + x

�
L)

��
� 


2
:

This shows that L will be strictly better o¤ by switching to x�L = x�R > �:

To summarise, we have shown that either R or L will have an incentive to deviate when

x�R > �. Hence, any voting equilibrium must involve x�R � �: We now show that x�L must also be

bounded above by �:

Suppose the contrary that x�L > �: Since we have already ruled out the cases when x�L > x�R >
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� and x�R � x�L > �; there are only two remaining cases to consider: (a) x�L > � > x�R and (b)

x�L > � = x�R:

Scenario (a) Suppose x�L > � > x�R: Then R will prefer to deviate to �: To see this, start with

R�s e¤ective expected utility under x�L > � > x�R; which is

	R (x
�
R;x

�
L) =

h
(x�L � �)

2 � (x�R � �)
2 + 


i
H

�
1

2
(x�R + x

�
L)

�
<

h
(x�L � �)

2 + 

i
H

�
1

2
(x�R + x

�
L)

�
<

h
(x�L � �)

2 + 

i
H

�
1

2
(�+ x�L)

�
= 	R (�;x

�
L) :

The third line uses the fact that H (�) is strictly increasing. This shows that R will be strictly

better o¤ by deviating to �:

Scenario (b) Suppose x�L > � = x�R > ��; which implies (�+ �)
2 < (x�L + �)

2 and

H

�
1

2
(�+ x�L)

�
< H (0) =

1

2
:

Using these, we can show that L will be strictly better o¤ by choosing the same policy as R:

Formally,

	L (x
�
L;�) =

h
(�+ �)2 � (x�L + �)

2 + 

i�
1�H

�
1

2
(�+ x�L)

��
< 


�
1�H

�
1

2
(�+ x�L)

��
� 


2
:

Hence, x�L > � = x�R cannot be an equilibrium. This proves that both x�R and x�L must be

bounded above by �:

Using a similar line of argument, we can show that both x�R and x
�
L must be bounded below

by ��: The details are not shown here. �

For any xL 2 R; de�ne a subset of R according to

SR (xL) �
�
xR 2 R : ��

q
(xL � �)2 + 
 � xR � �

�
:
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Similarly, for any xR 2 R; de�ne

SL (xR) �
�
xL 2 R : �� � xL � ��+

q
(xR + �)

2 + 


�
:

Taken together, Parts I & II establish that any voting equilibrium must satisfy x�R 2 SR (x�L) and

x�L 2 SL (x�R) :

Part III Any voting equilibrium (x�L; x
�
R) ; if exists, must satisfy x

�
L � x�R:

Proof of Part III Suppose the contrary that x�R < x�L: Then there are two possible scenarios:

(A) 12 (x
�
R + x

�
L) � 0; and (B) 12 (x

�
R + x

�
L) > 0:

Scenario (A) In this case, we have

H

�
1

2
(x�R + x

�
L)

�
� 1

2
:

Since both x�R and x
�
L must be bounded above by �; x

�
R < x�L implies (x

�
R � �)

2 > (x�L � �)
2 :

Using these observations, we can show that R is strictly better o¤ by choosing the same policy

as L: Starting with R�s e¤ective expected utility under x�R < x�L,

	R (x
�
R;x

�
L) =

h
(x�L � �)

2 � (x�R � �)
2 + 


i
H

�
1

2
(x�R + x

�
L)

�
< 
H

�
1

2
(x�R + x

�
L)

�
� 


2
:

This proves that R will have an incentive to deviate.

Scenario (B) In this case, we can show that L will be strictly better o¤ by choosing the same

policy as R: The proof is similar to Scenario (A). In this case, we have

H

�
1

2
(x�R + x

�
L)

�
<
1

2
:
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Since both x�R and x
�
L must be bounded below by ��; x�R < x�L implies (x

�
L + �)

2 > (x�R + �)
2 :

Party L�s e¤ective expected utility in this scenario is

	L (x
�
L;x

�
R) =

h
(x�R + �)

2 � (x�L + �)
2 + 


i�
1�H

�
1

2
(x�R + x

�
L)

��
< 


�
1�H

�
1

2
(x�R + x

�
L)

��
� 


2
:

Therefore L will have an incentive to deviate from x�R < x�L to x
�
L = x�R:

This rules out x�R < x�L as a voting equilibrium, which proves the statement in Part III. Taken

together, Parts I to III establish that �� � x�L � x�R � �: This completes the proof of Lemma

B1. �

B2. Some Preliminary Results

In light of Lemma B1, it is clear that only �R (xR;xL) ; �L (xL;xR) [i.e., the part of fWR (xR;xL)

and fWL (xL;xR) when xR > xL] and 
=2 are relevant for equilibrium analysis. In this subsec-

tion, we present three preliminary results that are related to the maximiser of �R (xR;xL) and

�L (xL;xR) : These results are the main ingredients in the proof of Proposition 1.

Lemma B2 For any xL 2 R; there exists at most one value of xR in [xL; �] that solves the

�rst-order condition
d�R (xR;xL)

dxR
= 0: (B.7)

Proof of Lemma B2 Fix xL 2 R: The �rst-order and second-order derivatives of �R (xR;xL)

with respect to xR are, respectively, given by

d�R (xR;xL)

dxR
=
1

2

h
(xL � �)2 � (xR � �)2 + 


i
H
0
(x)� 2 (xR � �)H (x) ; (B.8)

d2�R (xR;xL)

dx2R
=

1

4

h
(xL � �)2 � (xR � �)2 + 


i
H
00
(x)

�2 (xR � �)H
0
(x)� 2H (x) : (B.9)

Evaluating the �rst-order derivative at xR = � gives

d�R (xR;xL)

dxR

����
xR=�

=
1

2

h
(xL � �)2 + 


i
H
0
�
1

2
(�+ xL)

�
< 0:
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This shows that it is never optimal for R to choose xR = �:

Let x0R be a solution of (B.7), or a stationary point. Then we have

h
(xL � �)2 �

�
x0R � �

�2
+ 

i
H
0
(x) = 4

�
x0R � �

�
H (x)

) (xL � �)2 �
�
x0R � �

�2
+ 
 = 4

�
x0R � �

� H (x)
H
0
(x)

; (B.10)

where x = (xL + x0R) =2: Substituting (B.10) into (B.9) and rearranging terms gives

d2�R (xR;xL)

dx2R

����
xR=x

0
R

=
�
x0R � �

� "H (x)
H
0
(x)

H
00
(x)� 2H 0

(x)

#
� 2H (x) :

It is known that both H (�) and H (�) of a normal distribution are log-concave functions [see

Bagnoli and Bergstrom (2005) for details]. This means

d2 lnH (x)

dx2
=
H
00
(x)

H (x)
�
"
H
0
(x)

H (x)

#2
� 0; for any x 2 R;

) H
0
(x)�

H (x)
�2
(
H (x)

H
0
(x)

H
00
(x)�H 0

(x)

)
� 0:

Since H
0
(�) < 0; logconcavity of H (�) implies

H (x)

H
0
(x)

H
00
(x) � H

0
(x) � 2H 0

(x) ; for any x 2 R: (B.11)

This, together with x0R < �, guarantees that

d2�R (xR;xL)

dx2R

����
xR=x

0
R

< 0:

The shows that any solution of the �rst-order condition in (B.7) will also satisfy the second-order

condition for maximisation.

Finally, we show that there exists at most one solution to (B.7). Suppose the contrary that

there are two distinct stationary points, say x0R and x
00
R:Without loss of generality, suppose xL �

x0R < x00R < �: Then by the above result, both x0R and x
00
R will satisfy the second-order condition

for maximisation. This means there exists "1 > 0 and "2 > 0 such that (i) xL < x0R+"1 < x00R�"2;

(ii) �R (xR;xL) is strictly decreasing over the range (x0R; x
0
R + "1) ; and (iii) �R (xR;xL) is strictly

increasing over the range (x00R � "2; x00R) : Since �R (xR;xL) is continuously di¤erentiable in xR,
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there must exist at least one other stationary point x000R between x0R and x00R that is a (local)

minimum. This contradicts the fact that any stationary point must satisfy the second-order

condition for maximisation. Hence, x0R and x
00
R must be the same point. This completes the proof

of Lemma B2. �

Lemma B3

(i) For any xL 2 R, if the following condition holds




2
H
0
(xL)� 2 (xL � �)H (xL) � 0; (B.12)

then �R (xL;xL) > �R (xR;xL) for all xR 2 (xL; �] :

(ii) For any xL 2 R, if the following condition holds,




2
H
0
(xL)� 2 (xL � �)H (xL) > 0; (B.13)

then there exists a unique value hR (xL) 2 (xL; �) such that �R [hR (xL) ;xL] > �R (xR;xL)

for all xR 2 [xL; �] :

Proof of Lemma B3 Fix xL 2 R: Consider the �rst-order derivative of �R (xR;xL) in (B.8),

which is strictly negative when evaluated at xR = �: Hence, �R (xR;xL) is strictly decreasing as

xR approaches �: When evaluated at xR = xL; the same derivative becomes

d�R (xR;xL)

dxR

����
xR=xL

=



2
H
0
(xL)� 2 (xL � �)H (xL) :

The sign of this expression depends on the shape of H (�) and model parameters. There are two

possible scenarios, which are stated in (B.12) and (B.13).

First consider the case when (B.12) holds with equality. This means xR = xL is a stationary

point that satis�es the �rst-order condition in (B.7). By Lemma B2, xR = xL is the unique

maximiser within the range [xL; �] so that �R (xL;xL) > �R (xR;xL) for all xR 2 (xL; �] : Next,

suppose (B.12) holds as a strict inequality, which means �R (xR;xL) is strictly decreasing at

xR = xL: We now show that �R (xR;xL) must be strictly decreasing over the entire range of

[xL; �] so that it has a single peak at xR = xL: Suppose the contrary that the �rst-order derivative

of �R (xR;xL) in (B.8) is strictly positive at some bxR 2 (xL; �) : Since �R (xR;xL) is continuously
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di¤erentiable in xR; there must exist two other values, x0R and x00R; in (xL; �) such that (i)

x0R < bxR < x00R and (ii) both x
0
R and x

00
R are stationary points, i.e., (B.7) holds. This, however,

contradicts the result in Lemma B2. Hence, �R (xR;xL) must be strictly decreasing in xR over

the entire range of [xL; �] when (B.12) is a strict inequality. This scenario is depicted in Figure

B1 Panel (a). This proves the statement in part (i).

Next, consider the case when (B.13) is valid, which means �R (xR;xL) is strictly increasing

at xR = xL: Since �R (xR;xL) is continuously di¤erentiable in xR; there exists a value hR (xL) 2

(xL; �) that solves the �rst-order condition in (B.7). By Lemma B2, hR (xL) is unique and

satis�es the second-order condition for maximisation. Hence, �R [hR (xL) ;xL] > �R (xR;xL) for

all xR 2 [xL; �] : This scenario is shown in Figure B1 Panel (b). This completes the proof of

Lemma B3. �

Figure B1: The Shape of �R (xR;xL) :

The third preliminary result establishes similar properties of �L (xL;xR) : The proof uses the

same line of arguments as in Lemmas B2 and B3, hence it is omitted.

Lemma B4

(i) For any xR 2 R; if the following condition holds




2
H 0 (xR)� 2 (xR + �)H (xR) � 0; (B.14)
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then �L (xR;xR) > �L (xL;xR) for all xL 2 [��; xR) :

(ii) For any xR 2 R; if the following condition holds




2
H 0 (xR)� 2 (xR + �)H (xR) < 0; (B.15)

then there exists a unique value hL (xR) 2 (��; xR) such that �L [hL (xR) ;xR] > �L (xL;xR)

for all xL 2 [��; xR] :

B3. Main Proof

We now proceed to the proof of Proposition 1.

Part (a) If we set xL = 0 in (B.12), then we can get




2
H
0
(0)� 2 (��)H (0) = �


2
h (0) + � � 0) � � 
h (0)

2
:

It follows from part (i) of Lemma B3 that

�R (0; 0) =



2
> �R (xR; 0) ; for all xR 2 (0; �] :

This means choosing xR = 0 is R�s unique best response to xL = 0: Likewise, if we set xR = 0 in

(B.14), then we can get



2
H 0 (0) � 2�H (0)) 
h (0)

2
� �:

By the �rst part of Lemma B4,

�L (0; 0) =



2
> �L (xL; 0) ; for all xL 2 [��; 0) ;

which means choosing xL = 0 is L�s unique best response to xR = 0: Hence, x�R = x�L = 0 is a

(symmetric) voting equilibrium when � � 
h (0) =2:

To prove that it is a unique symmetric voting equilibrium, suppose the contrary that there

exists another one with x�R = �x�L = exeq 2 (0; �) : In other words, x�R = exeq is an interior
solution that maximises �R (xR;�exeq) over the range [�exeq; �] : The �rst-order condition for this
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maximisation problem is given by

d�R (xR;�exeq)
dxR

=
1

2

h
(�exeq � �)2 � (xR � �)2 + 
iH 0

(x)� 2 (xR � �)H (x) = 0:

Since this is a symmetric equilibrium, x = 0: Substituting this and xR = exeq into the above
condition gives h

(�exeq � �)2 � (exeq � �)2 + 
iH 0
(0) = 4 (exeq � �)H (0)

) � (4�exeq + 
)h (0) = 2 (exeq � �)
) exeq = 2�� 
h (0)

4�h (0) + 2
� 0:

The negative sign follows from � � 
h (0) =2: The last line contradicts the presumption that

exeq > 0; hence, x�R = x�L = 0 is the unique symmetric voting equilibrium when � � 
h (0) =2:

This establishes part (a) of Proposition 1.

Part (b) Suppose � > 
h (0) =2: De�ne

x�eq =
2�� 
h (0)
4�h (0) + 2

> 0:

Following the argument in part (a), xR = x�eq is the unique value that satis�es the �rst-order

condition
d�R

�
xR;�x�eq

�
dxR

= 0:

As shown in the proof of Lemma B2, this means xR = x�eq is the unique value that maximises

�R
�
xR;�x�eq

�
over the range

�
�x�eq; �

�
: Consequently,

�R
�
x�eq;�x�eq

�
> �R

�
�x�eq;�x�eq

�
= 


�
1�H

�
�x�eq

��
� 


2
= fWR

�
�x�eq;�x�eq

�
: (B.16)

The last inequality follows from the facts that 
 � 0 and H
�
�x�eq

�
< 1=2 as x�eq > 0: Note thatfWR (xR;xL) is discontinuous at xR = xL (except when xL = 0), i.e.,

fWR

�
�x�eq;�x�eq

�
6= �R

�
�x�eq;�x�eq

�
;

due to the discontinuity in R�s winning probability. The last part of (B.16) thus ensures that R

has no incentive to deviate from xR = x�eq to xR = �x�eq: This proves that choosing xR = x�eq
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is R�s unique best response to xL = �x�eq: Using the same line of argument, we can show that

choosing xL = �x�eq is L�s unique best response to xR = x�eq: It follows that x
�
R = �x�L = x�eq > 0

is the unique symmetric polarised equilibrium when � > 
h (0) =2:

To see that the convergent equilibrium x�R = x�L = 0 cannot emerge in this case, we will

use the result in part (ii) of Lemma B3. Note that � > 
h (0) =2 can be obtained by setting

xL = 0 in (B.13). Then this result states that there exists a unique value hR (0) 2 (0; �) such

that �R [hR (0) ; 0] > �R (xR; 0) for all xR 2 [0; �] : In other words, choosing xR = 0 is not R�s

best response to xL = 0 when � > 
h (0) =2: Hence, x�R = x�L = 0 cannot be an equilibrium. This

establishes part (b) of Proposition 1 and concludes the whole proof.
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C. Extended Model with Multiple Signals

Belief and Information

In this section, we present an extended model in which voters receive imperfect information about

the hidden state s 2 R from n � 1 di¤erent sources prior the election. Each information channel

i 2 f1; 2; :::; ng produces a noisy public signal mi which is potentially biased. Speci�cally, let

mi = bi + s + "i; where bi 2 R is an unknown parameter that captures the inherent bias of the

ith information channel and "i 2 R is the error term in mi, for all i 2 f1; 2; :::; ng : Voters share

the same subjective prior belief about the state variable s and the biases b = (b1; :::; bn)
T : This

is assumed to take the form of a joint multivariate normal distribution N (�0;�0) ; where

�0 =

264 �s

�b

375 and �0 =

264 �2s 
T


 �b

375 :
In the above expressions, �s and �

2
s are scalars representing the mean and variance of the marginal

distribution of s; whereas �b and �b are the mean vector and covariance matrix of the marginal

distribution of b:1 The covariances between s and b are captured by the 1-by-n row vector


T = (!1;:::; !n) ; where !i � Cov (s; bi) : A positive !i means that bi is expected to exaggerate

or complement the e¤ect of the hidden state. A negative value, on the other hand, means that

voters expect bi to contradict or subdue the e¤ect of s:

The error terms, " = ("1; :::; "n)
T ; are drawn from a normal distribution N (0;�") : Each "i is

independent of the distribution of political attitudes �v and the voters�prior belief about (s;b) :

The statistical properties of " are known to both voters and political parties.

Given the voters�prior belief, the signals m = (m1; :::;mn)
T have a joint normal distribution

with mean vector

�m = �s � 1n + �b;

where 1n is an n-by-1 column of ones, and covariance matrix

�m = E
h
(m��m) (m��m)T

i
= �b + �

2
s � 1n1Tn +�" +
1

T
n +


T1n: (C.1)

Equation (C.1) suggests that the quality of the signals (as measured by the inverse of �m) is

1All the covariance matrices appeared in this document are assumed to be (at least) positive semide�nite.
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determined by three groups of factors:2 (i) the precision of the voters�subjective prior belief, as

captured by � s � ��2s and the inverse of �b; (ii) the precision of the signal errors, as captured by

the inverse of �"; and (iii) the covariances between s and b contained in 
:

After observing the public signals, voters update their belief about (s;b) using Bayes�rule.

The marginal distribution of s in the posterior belief is characterised in Lemma C1. In order to

state this result, we need to introduce two additional notations: De�ne� � E
h
(s� �s) (m��m)T

i
;

which is a 1-by-n row vector containing the covariance between s and m: The ith element of �

is �i � Cov (s;mi) = �2s + !i. Let �i;j be the element on the ith row and jth column of the

precision matrix ��1m : The proof of Lemma C1 is shown later in this section.

Lemma C1 The marginal distribution of s in the voters�posterior belief is a normal distribution

with mean

E (s jm) = �s +
nX
j=1

�j

�
mj � �s � �bj

�
; (C.2)

and variance

var (s jm) = �2s �
nX
j=1

�j�j ; (C.3)

where �j �
Pn

i=1 �i�i;j for all j 2 f1; 2; :::; ng :

Similarly to the model in the main text, voter v�s ideal policy is given by

��v = �v + E (s jm) :

If xR 6= xL; then this voter will support R if either (i) xR > xL and ��v > x; or (ii) xR < xL and

��v < x:

In the presence of multiple signals, the two political parties�common belief about (s;b) is

given by a normal distribution N
�b�0; b�0� with

b�0 =
264 b�sb�b

375 and b�0 =
264 b�2s b
T

b
 b�b

375 :
The elements of b�0 and b�0 can be interpreted similarly as those of �0 and �0: Under this belief,

2Except for some special cases (such as those considered in Sections D and E), there is no general formula for
��1
m : Hence, the discussion here should be considered as heuristic in nature.
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each signal mi has an expected value Ep (mi) = b�s + b�bi : The covariance structure among the n
signals is determined by

Covp (mi;mj) = Covp (bi; bj) + b�2s + Covp (s; bi) + Covp (s; bj) ;
where Covp (bi; bj) is the (i; j)th element of b�b and Covp (s; bi) is the ith element of b
; for all i;
j 2 f1; 2; :::; ng : We use the subscript �p�to indicate that these moments are derived from the

parties�belief. From the parties�perspective, E (s jm) is a normal random variable with mean

Ep [E (s jm)] � e� = �s +
nX
j=1

�j

h
(b�s � �s) + �b�bj � �bj�i (C.4)

and variance

varp fE (s jm)g � e�2 = nX
i=1

nX
j=1

�i�jCovp (mi;mj) : (C.5)

To derive (C.5), we �rst rewrite (C.2) as

E (s jm) =

0@1� nX
j=1

�j

1A�s �
nX
j=1

�j�bj +

nX
j=1

�jmj :

The �rst two terms in the above equation are deterministic constants. Hence, we can write

varp fE (s jm)g = varp

0@ nX
j=1

�jmj

1A =

nX
i=1

nX
j=1

�i�jCovp (mi;mj) :

The rest of the model is the same as described in Section 2 of the main text. In particular, the

characterisations of x�eq in Proposition 1 and Corollary 1 are unchanged.

Proof of Lemma C1

The proof is based on a well-known result concerning conditional multivariate normal distribu-

tions. This result is as follows [see, for instance, Greene (2012, p.1042, Theorem B.7)]. Suppose

[X1;X2] has a joint multivariable normal distribution N (�;�), where

� =

264 �1
�2

375 and � =

264 �11 �12

�21 �22

375 :
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The marginal distribution of Xi is given by N (�i;�ii) for i 2 f1; 2g : Then the conditional

distribution of X1 given X2 is normal with mean vector

�1;2 = �1 +�12�
�1
22 (X2 � �2) ;

and covariance matrix

�11;2 = �11 ��12��122 �21:

In order to apply this result, �rst note that (s;b;m) has a joint multivariate normal distrib-

ution with mean vector �y and covariance matrix �y given by

�y =

266664
�s

�b

�m

377775 and �y =

266664
�2s 
 �


T �b �

�T �T �m

377775 :

The meaning of � in the covariance matrix has been explained in the main text. The covariances

between b and m are captured by the n-by-n matrix � � E
h
(b� �b) (m��m)T

i
: The (i; j)th

element of � is denoted by �i;j � Cov (bi;mj) = !i + Cov (bi; bj) : Note that this notation is

di¤erent from the one in the main text where we use �b to represent the covariance between b

and the signal.

Using the theorem mentioned above, the posterior distribution of (s;b) after observing m is

a normal distribution with mean vector

�0 =

264 �s

�b

375+
264 �

�

375��1m (m��m) ; (C.6)

and covariance matrix

�0 =

264 �2s 



T �b

375�
264 �

�

375��1m �
�T �T

�
: (C.7)

It follows that the marginal distribution of s in the voters�posterior belief is also normal. To

derive the posterior mean and posterior variance of s, we �rst de�ne �i;j as the element on the
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ith row and jth column of ��1m : Then

264 �

�

375��1m (m��m) =

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
m1 � �m1

...

mn � �mn

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775
| {z }

(n+1)-by-n

266664
Pn

j=1 �1;j

�
mj � �mj

�
...Pn

j=1 �n;j

�
mj � �mj

�
377775

| {z }
n-by-1

:

The �rst entry in the resulting (n+ 1)-by-1 vector is

���1m (m��m) =
nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�
:

Substituting this into (C.6) gives the posterior mean of s;

E (s jm) = �s +

nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�

= �s +

nX
j=1

 
nX
i=1

�i�i;j

!
| {z }

�j

�
mj � �mj

�
:

Similarly,

264 �

�

375��1m �
�T �T

�
=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
�1 �1;1 � � � �n;1
...

...

�n �1;n � � � �n;n

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
Pn

j=1 �1;j�j
Pn

j=1 �1;j�1;j � � �
Pn

j=1 �1;j�n;j
...

...Pn
j=1 �n;j�j

Pn
j=1 �n;j�1;j � � �

Pn
j=1 �n;j�n;j

377775 :

38



The (1; 1)th element of the resulting (n+ 1)-by-(n+ 1) matrix is

���1m �
T =

nX
i=1

nX
j=1

�i�i;j�j :

Substituting this into (C.7) gives the posterior variance of s,

var (s jm) = �2s �
nX
j=1

 
nX
i=1

�i�i;j

!
�j :

This completes the proof of Lemma C1. �
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D. Unbiased Independent Signals

In this and the next section, we consider two special cases of the multiple signal model. In both

cases, voters�posterior expectation of s and parties�perceived uncertainty can be expressed as

E (s jm) =  bm and e�2 =  2varp (bm) ;
where bm is a su¢ cient statistic of the observed signals fm1; :::;mng and  captures the responsive-

ness of voters�posterior expectation to bm: Similar to the model in the main text, the coe¢ cient
 captures the learning e¤ect while varp (bm) captures the uncertainty e¤ect.

In the current special case, it is assumed that (i) both voters and politicians believe with

certainty that all n signals are unbiased so that each bi is a deterministic constant and normalised

to zero, and (ii) the error terms f"1; :::; "ng are independently drawn from di¤erent probability

distributions. Speci�cally, each "i is assumed to be drawn from a normal distribution N
�
0; ��1"i

�
;

where � "i is the precision of mi. The expressions of E (s jm) ; var (s jm) and e�2 are shown in
Lemma D1. The proof of Lemma D1 and Proposition C1 will be shown later in this section.

Lemma D1 Suppose all the signals are unbiased and each "i is independently drawn from the

distribution N
�
0; ��1"i

�
for all i: De�ne  and bm according to

 �
Pn

i=1 � "i
� s +

Pn
i=1 � "i

> 0 and bm �
nX
i=1

�imi; (D.1)

where � s � ��2s and �i � � "i=
Pn

i=1 � "i for all i: Then the mean and variance of s in the voters�

posterior beliefs are given by

E (s jm) =  bm and var (s jm) = 1

� s +
Pn

i=1 � "i
: (D.2)

The political parties�perceived uncertainty is given by e�2 =  2varp (bm) ; where
varp (bm) � b� s +Pn

i=1 � "ib� s (Pn
i=1 � "i)

; (D.3)

and b� s � b��2s :

In this special case, the summary measure bm is a weighted average of all the signals whereby

more precise signals are weighted more heavily. If the error terms f"1; :::; "ng are i.i.d. normal
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random variables, so that � "i = � " for all i; then the summation
Pn

i=1 � "i in (D.1)-(D.3) will be

replaced by n� ": The parties�perceived uncertainty then becomes

e�2 = n� " (b� s + n� ")b� s (� s + n� ")2 :
On the other hand, if voters and parties share the same subjective prior beliefs about s so that

b� s = � s; then the parties�perceived uncertainty becomes

e�2 = Pn
i=1 � "i

� s (� s +
Pn

i=1 � "i)
:

Recall that policy polarisation will emerge in a symmetric equilibrium if and only if e�2 exceeds
a certain threshold value �2min. Thus, understanding the relations between f� s;b� s; � "1 ; :::; � "ng
and e�2 is essential in understanding how quality of information and disagreement will a¤ect policy
polarisation.3 To this end, we �rst examine the e¤ects of changing f� s;b� s; � "1 ; :::; � "ng on e�2 in
Proposition D1.

Proposition D1 Suppose all the signals are unbiased and each "i is independently drawn from

the distribution N
�
0; ��1"i

�
for all i:

(a) Holding other factors constant, an increase in either � s or b� s will lower the value of e�2.
(b) Holding other factors constant, an increase in � "i ; for any i 2 f1; 2; :::; ng ; will raise the

value of  but lower the value of varp (bm) :
(c) Holding other factors constant,

de�2
d� "i

? 0 if and only if 2varp (bm) ? var (bm) ; (D.4)

for any i 2 f1; 2; :::; ng :

The �rst part of Proposition D1 states that policy polarisation is less likely to emerge and

less severe when either voters or parties are more certain about the hidden state in their prior

beliefs. This result can be easily explained through the learning e¤ect and the uncertainty e¤ect.

As voters become more certain about s, they will be less reliant on the signals in the learning

process. Consequently, their posterior expectation will be less responsive to bm (i.e.,  decreases):

3The threshold value �2min itself is independent of the precision parameters f�s;b�s; �"1 ; :::; �"ng :
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From the parties�perspective, this means less ex ante uncertainty in the median voter�s ideal

policy E (s jm) ; hence a lower value of e�2.4 As explained in Section 2 in the main text, this will
strengthen the parties�o¢ ce motivation and incentivise them to move closer to their opponent�s

position in order to boost their winning probability. Hence, an increase in � s will lower polarisation

by weakening the learning e¤ect. An increase in b� s; on the other hand, has no impact on the
voters�learning process. But as the parties�become more certain about the hidden state, they

also perceive the signals as less uncertain. This suppresses the uncertainty e¤ect and reduces the

extent of polarisation.

The other parts of Proposition D1 analyse the e¤ects of changing a single � "i on e�2: Part (b)
shows that such a change will have opposite e¤ects on  and varp (bm) : Firstly, having more precise
signals will encourage voters to become more reliant on them when updating their beliefs. This

will enhance polarisation by strengthening the learning e¤ect. An increase in � "i also means that

the signal mi becomes more precise which will curb the uncertainty e¤ect and lower polarisation.

As in Section 3 of the main text, the overall e¤ect on e�2 can be determined by considering
d ln e�2
d ln � "i

= 2
d ln 

d ln � "i
+
d ln varp (bm)
d ln � "i

:

The �rst term on the right captures the contribution of the learning e¤ect, while the second term

represents the uncertainty e¤ect. As shown in the proof of Proposition D1,

d ln 

d ln � "i
=

� "i

(
Pn

i=1 � "i)
2

1

var (bm) > 0:
d ln varp (bm)
d ln � "i

= � � "i

(
Pn

i=1 � "i)
2

1

varp (bm) < 0:
The interpretations are essentially the same as in the main text. The result in (D.4) can be

obtained by combining these equations.

We can also express this condition in terms of the precision parameters. In the current special

case, 2varp (bm) ? var (bm) if and only if
� s ?

b� sPn
i=1 � "ib� s + 2Pn
i=1 � "i

: (D.5)

4 In the extreme case when �s is arbitrarily large, var (s jm) will converge to zero and E (s jm) will converge
to the expected value of s in the prior distribution, which is �s = 0: The median voter�s ideal policy then converges
to the median value of �v; which is a known constant. This eliminates the uncertainty faced by the parties and
paves the way for policy convergence.
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Thus, improving the precision of the noisy signals will increase [resp., reduce] perceived uncer-

tainty and polarisation if and only if � s is greater [resp., less] than a threshold that is determined

by b� s and Pn
i=1 � "i : Notice that if there is no disagreement between voters and parties so that

� s = b� s and var (bm) = varp (bm), then more precise signals will always lead to an increase ine�2 and polarisation. This is no longer the case when voters and political parties disagree. In
particular, if the political parties are su¢ ciently more certain or more knowledgeable on the pol-

icy issue (the hidden state) so that 2varp (bm) < var (bm) ; then more precise signal(s) will reduce
polarisation.5

Proof of Lemma D1

Suppose each bi; i 2 f1; 2; :::; ng ; is a deterministic constant normalised to zero, and suppose

�s = 0: Then (s;m) has a joint multivariate normal distribution with zero mean vector and

covariance matrix V given by

V =

264 �2s �T

� �m

375 ;
where � = �2s�1n: Given that each "i is drawn from the distribution N

�
0; �2"i

�
; where �2"i = ��1"i ;

then the covariance structure of fm1; :::;mng is given by

Cov (mi;mj) =

8><>: �2s + �
2
"i for i = j;

�2s for i 6= j:

Hence, �m can be expressed as the sum of two n-by-n matrices,

�m = A+ �
2
s1n1

T
n ;

where A is a diagonal matrix with diagonal elements
�
�2"1 ; :::; �

2
"n

�
: The inverse of �m can be

derived using equation (3) in Henderson and Searle (1981, p.53). Speci�cally, this equation states

that for any matrix M = A + ruvT ; where A can be any invertible matrix, r is a scalar, u is a

5Note that the expression on the right side of (D.5) is strictly lower than b�s: Hence, part (c) of Proposition D1
implies

de�2
d�"i

< 0 i¤ �s <
b�sPn

i=1 �"ib�s + 2Pn
i=1 �"i

< b�s:
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column vector and vT is a row vector, the inverse can be expressed as

M�1 = A�1 � �A�1uvTA�1; (D.6)

where

� =
r

1 + rvTA�1u
:

See also the �updating formula�in Greene (2012, p.992). Hence, by setting r = �2s; u = 1n and

vT = 1Tn ; we can get

��1m = A�1 � �A�11n1TnA�1; (D.7)

where

� =
�2s

1 + �2s1
T
nA

�11n
:

Since A is a diagonal matrix, its inverse is simply

A�1 =

266666664

� "1 0 � � � 0

0 � "2
...

...
. . .

...

0 � � � � � � � "n

377777775
: (D.8)

It follows that 1TnA
�11n =

Pn
i=1 � "i ; and

� =
�2s

1 + �2s
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
; (D.9)

where � s � ��2s : In addition,

A�11n1
T
nA

�1 =

266666664

� "1

� "2
...

� "n

377777775
�
� "1 � "2 � � � � "n

�
=

266666664

�2"1 � "1� "2 � � � � "1� "n

� "1� "2 �2"2
...

...
. . .

...

� "1� "n � � � � � � �2"n

377777775
: (D.10)

Using (D.7)-(D.10), we can express the elements on any jth column of ��1m as

�i;j =

8><>: � "j � �� "j 2 for i = j;

��� "i� "j for i 6= j;
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) �j =
nX
i=1

�i�i;j = �2s� "j

 
1� �

nX
i=1

� "i

!
=

� "j
� s +

Pn
i=1 � "i

: (D.11)

Substituting these and �i = �2s into Equations (C.2) and (C.3) in Section C gives

E (s jm) =
nX
i=1

�imi =

Pn
i=1 � "imi

� s +
Pn

i=1 � "i
=

Pn
i=1 � "i

� s +
Pn

i=1 � "i| {z }
 

�
nX
i=1

�imi| {z }bm
;

where �i � � "i=
Pn

i=1 � "i for all i; and

var (s jm) = 1

� s
�

nX
i=1

�i�i =
1

� s
� 1

� s

Pn
i=1 � "i

� s +
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
:

What remains is to derive the formula for e�2: Under the parties�belief, the covariance structure
of fm1; :::;mng is given by

Covp (mi;mj) =

8><>: b�2s + �2"j for i = j;

b�2s for i 6= j;

for any i and j: Substituting these into (C.5) gives

e�2 =

nX
i=1

nX
j=1

�i�jCovp (mi;mj) =

nX
i=1

�i

nX
j=1

�jCovp (mi;mj)

=
nX
i=1

�i

24�i �b�2s + �2"i�+X
j 6=i

�jb�2s
35

=

nX
i=1

�2i�
2
"i +

nX
i=1

�i �
nX
j=1

�j � b�2s: (D.12)

Using (D.11), the �rst term in (D.12) can be simpli�ed as follows:

nX
i=1

�2i�
2
"i =

nX
i=1

�2"i�
2
"i

(� s +
Pn

i=1 � "i)
2 =

Pn
i=1 � "i

(� s +
Pn

i=1 � "i)
2 ;

since � "i�
2
"i = 1 for all i: The second term in (D.12) can be simpli�ed as follows:

nX
i=1

�i �
nX
j=1

�j � b�2s =

 
nX
i=1

�i

!2 b�2s
=

� Pn
i=1 � "i

� s +
Pn

i=1 � "i

�2 b�2s:
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Hence, we can now rewrite (D.12) as

e�2 =

Pn
i=1 � "i

(� s +
Pn

i=1 � "i)
2 +

� Pn
i=1 � "i

� s +
Pn

i=1 � "i

�2 b�2s
=

� Pn
i=1 � "i

� s +
Pn

i=1 � "i

�2
| {z }

 2

24 nX
i=1

� "i

!�1
+ b�2s

35 :

The last step is to show that

varp (bm) =  nX
i=1

� "i

!�1
+ b�2s:

First, note that

varp (bm) = varp

 
nX
i=1

�imi

!

=
nX
i=1

�i

nX
j=1

�jCovp (mi;mj) =
nX
i=1

�i

0@b�2s nX
j=1

�j + �i�
2
"i

1A :

Since
Pn

j=1 �j = 1 and �i�
2
"i = (

Pn
i=1 � "i)

�1 for all i; we can simplify the above expression to

become

varp (bm) = b�2s +
 

nX
i=1

� "i

!�1
:

This proves that e�2 =  2varp (bm) :
Using � s � b��2s ; we can show that

varp (bm) = (b� s +Pn
i=1 � "i)b� s (Pn

i=1 � "i)
: (D.13)

Using the same line of argument and replacing b�2s with �2s, we can show that
var (bm) = (� s +

Pn
i=1 � "i)

� s (
Pn

i=1 � "i)
; (D.14)

which is the unconditional variance of bm under the voters�subjective prior belief. This completes

the proof of Lemma D1. �
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Proof of Proposition D1

As shown in the previous proof, the parties�perceived uncertainty e�2 can be expressed as
e�2 = � Pn

i=1 � "i
� s +

Pn
i=1 � "i

�2
| {z }

 2

� b� s +Pn
i=1 � "ib� sPn

i=1 � "i| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : Likewise, any changes inb� s will only a¤ect varp (bm) but not  : Consider the logarithm of  ;

ln = ln

 
nX
i=1

� "i

!
� ln

 
� s +

nX
i=1

� "i

!
:

Totally di¤erentiating this with respect to f ; � s; � "ig gives

d 

 
= � � s

� s +
Pn

i=1 � "i

d� s
� s

+
� s� "i

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)

d� "i
� "i

:

Suppose d� "i = 0; then we have

d 

d� s
= �  

� s +
Pn

i=1 � "i
< 0 ) de�2

d� s
< 0:

On the other hand, if d� s = 0; then

d 

d� "i
=

� s 

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)
> 0; (D.15)

) � "i
 

d 

d� "i
=

� "iPn
i=1 � "i

� s
� s +

Pn
i=1 � "i

=
� "i

(
Pn

i=1 � "i)
2

1

var (bm) :
The second equality follows from (D.14).

Similarly, totally di¤erentiating ln [varp (bm)] with respect to fvarp (bm) ;b� s; � "ig gives
ln [varp (bm)] = ln"b� s + nX

i=1

� "i

#
� lnb� s � ln nX

i=1

� "i

!

dvarp (bm)
varp (bm) = �

Pn
i=1 � "ib� s +Pn

i=1 � "i

db� sb� s � b� s� "i
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

d� "i
� "i

:
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When all other factors except b� s are kept constant,
dvarp (bm)

db� s = �
Pn

i=1 � "ib� s +Pn
i=1 � "i

varp (bm)b� s < 0 ) de�2
db� s < 0: (D.16)

If d� s = 0; then
dvarp (bm)
d� "i

= � b� svarp (bm)
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

< 0; (D.17)

) � "i
varp (bm) dvarp (bm)d� "i

= � � "iPn
i=1 � "i

b� s
(b� s +Pn

i=1 � "i)
= � � "i

(
Pn

i=1 � "i)
2

1

varp (bm) :
The second equality follows from (D.13). Equations (D.15) and (D.17) together prove the state-

ment in part (b).

Holding � s and b� s constant, the overall e¤ect of changing � "i on e�2 can be determined by
� "ie�2 de�

2

d� "i
= 2

� "i
 

d 

d� "i
+

� "i
varp (bm) dvarp (bm)d� "i

=

�
2

var (bm) � 1

varp (bm)
�

� "i

(
Pn

i=1 � "i)
2 :

Hence,
de�2
d� "i

? 0, 2varp (bm) ? var (bm) :
Using (D.13) and (D.14), we can show that

2varp (bm) ? var (bm) if and only if
2� s

� s +
Pn

i=1 � "i
? b� sb� s +Pn

i=1 � "i
;

which is equivalent to

� s ?
b� sPn

i=1 � "ib� s + 2Pn
i=1 � "i

:

This completes the proof of Proposition D1. �
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E. Unbiased, Correlated and Exchangeable Signals

In this section we maintain the assumption that all signals are (believed to be) unbiased so that

bi = 0 for all i, but the error terms f"1; :::; "ng are now assumed to be exchangeable normal

random variables. Speci�cally, this means each "i has the same marginal distribution with mean

zero and precision � "; and each pair ("i; "j) ; i 6= j; has the same covariance. The covariance

matrix �" is now given by

�" =
1

� "

266666664

1 � � � � �

� 1 � � � �

...
. . .

...

� � � � � 1

377777775
; (E.1)

where � � �1= (n� 1) is the correlation coe¢ cient between any pair ("i; "j) ; i 6= j: The lower

bound of � is necessary for �" to be positive semi-de�nite. The resulting expressions of E (s jm) ;

var (s jm) and e�2 are shown in Lemma E1. The proof of Lemma E1 and Proposition E1 are
shown later in this section.

Lemma E1 Suppose all the signals are unbiased and the error terms f"1; :::; "ng are exchange-

able normal random variables with zero mean vector and covariance matrix �" as shown in (E.1).

De�ne  and bm according to

 � n� "
n� " + � s [1 + (n� 1) �]

> 0 and bm � 1

n

nX
i=1

mi:

Then the mean and variance of s in the voters�posterior beliefs are given by

E (s jm) =  bm and var (s jm) = 1 + (n� 1) �
n� " + � s [1 + (n� 1) �]

:

The political parties�perceived uncertainty is given by e�2 =  2varp (bm) ; where
varp (bm) = n� " + b� s [1 + (n� 1) �]

n� "b� s :

The results in Proposition D1 can be readily extended to the current case with only minor

changes. These are formally stated in the �rst three parts of Proposition E1. The interpretations

are essentially the same as before, hence they are not repeated here.
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Proposition E1 Suppose all the signals are unbiased and the error terms f"1; :::; "ng are ex-

changeable normal random variables with zero mean vector and covariance matrix �" as shown

in (E.1).

(a) Holding other factors constant, an increase in either � s or b� s will lower the value of e�2.
(b) Holding other factors constant, an increase in � " will raise the value of  but lower the

value of varp (bm) :
(c) Holding other factors constant,

de�2
d� "

? 0 if and only if 2varp (bm) ? var (bm) : (E.2)

(d) Holding other factors constant, an increase in � will lower the value of  but raise the value

of varp (bm) :
(e) Holding other factors constant,

de�2
d�

? 0 if and only if 2varp (bm) 7 var (bm) : (E.3)

The last two parts of Proposition E1 concern the e¤ects of � on e�2: A higher value of �

means that the signals fm1; :::;mng are more correlated. In the extreme case when � = 1, all the

signals are essentially echoing each other. From the voters�perspective, observing n > 1 perfectly

correlated signals is no better than observing a single one in terms of learning the hidden state.

Thus, a more positive value of � will erode the voters�con�dence on the signals and weaken the

learning e¤ect.6 The same increase in �; however, also raises the parties�perceived variance of

bm; strengthening the uncertainty e¤ect. The overall e¤ect on e�2 again depends on the relative
magnitude between 2varp (bm) and var (bm) : Interestingly, the condition in (E.3) is the exact
opposite of the one in (E.2). This suggests that, for any given set of f� s;b� s; � "; n; �g ; � " and �
tend to have opposite e¤ects on e�2:

In the current special case, 2varp (bm) ? var (bm) if and only if
� s ?

n� "b� s
2n� " + b� s [1 + (n� 1) �] :

6The same idea has been put forward by Ortoleva and Snowberg (2015, p.518), but they have not explored the
relation between perceived sigal correlation and policy polarisation.
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Similar to the �ndings in Proposition D1, if there is no disagreement between voters�and politi-

cians�beliefs so that varp (bm) = var (bm) ; then an increase in the precision of the signals or a
decrease in the correlation between signals will raise the parties�perceived uncertainty. However,

when voters and politicians disagree, it is possible that an increase in � " or a decrease in � will

lead to a lower degree of perceived uncertainty. This happens when b� s is su¢ ciently higher than
� s or when � is su¢ ciently low.

Proof of Lemma E1

Suppose � � �1= (n� 1) : The inverse of �" can be shown to take the following form

��1" =
� "

1 + (n� 2) �� (n� 1) �2

266666664

1 + (n� 2) � �� � � � ��

�� 1 + (n� 2) � � � � ��
...

. . .
...

�� � � � �� 1 + (n� 2) �

377777775
: (E.4)

To see this, note that all diagonal entries of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
1 + (n� 2) �� (n� 1) �2

�
= 1;

and all o¤-diagonal elements of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
��+ [1 + (n� 2) �] �+ (n� 2) �2

	
= 0:

De�ne the notation � according to

� � � "
1 + (n� 2) �� (n� 1) �2 =

� "
(1� �) [1 + (n� 1) �] :

The covariances among the signals fm1; :::;mng are given by Cov (mi;mj) = �2s+Cov ("i; "j) ;

which implies

�m = �" ++�
2
s1n1

T
n :

Using the same formula in (D.6), we can get

��1m = ��1" � ���1" 1n1Tn��1" ; (E.5)

51



where

� =
�2s

1 + �2s1
T
n�

�1
" 1n

=
1

� s + 1Tn�
�1
" 1n

:

It is straightforward to show that

1Tn�
�1
" 1n = n� (1� �) = n� "

1 + (n� 1) �:

) � =
1 + (n� 1) �

n� " + � s [1 + (n� 1) �]
(E.6)

On the other hand,

��1" 1n1
T
n�

�1
" = �2 (1� �)2 1n1Tn : (E.7)

Using (E.5)-(E.7), we can write the elements on any jth column of ��1m as

�i;j =

8><>: � [1 + (n� 2) �]� ��2 (1� �)2 for i = j;

���� ��2 (1� �)2 for i 6= j:

Using these and �i = �2s = ��1s ; we can get

�j =

nX
i=1

�i�i;j =
1

� s

h
� (1� �)� n��2 (1� �)2

i
=

� "
� s [1 + (n� 1) �]

�
1� n� "�

1 + (n� 1) �

�
=

� "
n� " + � s [1 + (n� 1) �]

:

Hence, the posterior mean and posterior variance of s are given by

E (s jm) = n� "
n� " + � s [1 + (n� 1) �]| {z }

 

� 1
n

nX
i=1

mi| {z }bm
;

var (s jm) = 1

� s

 
1�

nX
i=1

�j

!
=

1 + (n� 1) �
n� " + � s [1 + (n� 1) �]

:

From the parties�perspective, the covariance structure of fm1; :::;mng is now given by

Covp (mi;mj) =

8><>: b��1s + ��1" for i = j;

b��1s + ��1" � for i 6= j;
(E.8)
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and the perceived uncertainty is given by

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
varp (bm) ;

where

varp (bm) =
1

n2

nX
j=1

nX
i=1

Covp (mi;mj)

=
1

n2

nX
j=1

�
nb��1s + ��1" [1 + (n� 1) �]

	
=

n� " + b� s [1 + (n� 1) �]
n� "b� s : (E.9)

Using the same steps, with b��1s replaced by ��1s in (E.8), we can show that

var (bm) = n� " + � s [1 + (n� 1) �]
n� "� s

: (E.10)

This completes the proof of Lemma E1. �

Proof of Proposition E1

Part (a) As shown above,

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
| {z }

 2

� n� " + b� s [1 + (n� 1) �]
n� "b� s| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : In particular,  (and hencee�2) is strictly decreasing in � s when � > �1= (n� 1) : If � = �1= (n� 1) ; then  ; varp (bm) ande�2 are all independent of � s: On the other hand, an increase in b� s will lower e�2 because
varp (bm) = 1b� s + [1 + (n� 1) �]n� "

;

which is strictly decreasing in b� s; and  is independent of b� s:
Part (b) Consider the logarithm of  and varp (bm) ;

ln = lnn+ ln � " � ln fn� " + � s [1 + (n� 1) �]g ;
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ln [varp (bm)] = ln fn� " + b� s [1 + (n� 1) �]g � lnn� ln � " � lnb� s:
Holding f� s;b� s; �; ng constant, consider the total derivatives of  and varp (bm) with respect to
� "; i.e.,

d 

 
=

� s [1 + (n� 1) �]
n� " + � s [1 + (n� 1) �]

d� "
� "

=
1 + (n� 1) �
n� "var (bm)| {z }

(+)

d� "
� "

; (E.11)

dvarp (bm)
varp (bm) = � b� s [1 + (n� 1) �]

n� " + b� s [1 + (n� 1) �] d� "� " = �1 + (n� 1) �n� "varp (bm) d� "� " : (E.12)

These show that an increase in � " will raise the value of  but lower varp (bm).
Part (c) The overall e¤ect on e�2 is determined by

� "e�2 de�
2

d� "
= 2

� "
 

d 

d� "
+

� "
varp (bm) dvarp (bm)d� "

:

Using (E.11) and (E.12), it can be shown that

de�2
d� "

? 0 , 2varp (bm) ? var (bm) :
The condition on the right side is equivalent to

2� s
n� " + � s [1 + (n� 1) �]

? b� s
n� " + b� s [1 + (n� 1) �] ;

which can be simpli�ed to become

� s ?
n� "b� s

2n� " + b� s [1 + (n� 1) �] :
This establishes the condition in part (c).

Part (d) Holding f� s;b� s; � "; ng constant, consider the total derivatives of  and varp (bm) with
respect to �; i.e.,

d 

 
= � � s (n� 1) �

n� " + � s [1 + (n� 1) �]
d�

�
;

dvarp (bm)
varp (bm) = b� s (n� 1) �

n� " + b� s [1 + (n� 1) �] d�� :
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Note that these equations are essentially the same as (E.11) and (E.12) but with opposite sides.

The desired result can be obtained by using the same steps as in part (c). This completes the

proof of Proposition E1. �
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F. Further Results on Learning E¤ect

In this section, we analyse the e¤ects of changing f� s; � bg on  2 within the single-signal model in

the main text. Lemma F1 can be viewed as an extension of Lemma 4 in the main paper. When

voters and politicians disagree, i.e., when (�s; �b) 6=
�b�s; b�b� ; any changes in f� s; � bg will not

a¤ect varp (m) : As a result, their e¤ects on  2 will translate directly to e�2 through the equation
de�2
d�s;b

= varp (m) �
d 2

d�s;b
;

Lemma F1

(a) Holding other factors constant,

d 2

d� s
? 0 if and only if

�
�s;b +

�s
�b

�"
�s;b +

2
�
�2b + �

2
"

��
�2s + �

2
b + �

2
"

� �s
�b

#
7 0: (F.1)

(b) Holding other factors constant,

d 2

d� b
? 0 if and only if

�
�s;b +

�s
�b

��
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
? 0: (F.2)

Proof of Lemma F1

Part (a) Given that Cov (s;m) = �2s + �s;b�s�b and var (m) = �2s + �2b + �2" + 2�s;b�s�b; we

can write

 =
Cov (s;m)

var (m)
=

�2s + �s;b�s�b

�2s + �
2
b + �

2
" + 2�s;b�s�b

: (F.3)

Di¤erentiating this with respect to � s gives

d 

d� s
=

n�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2o
[var (m)]2

d�s
d� s|{z}
(�)

:
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The expression inside the curly brackets can be simpli�ed as follows

�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2
=

�
2�s + �s;b�b

� �
�2s + �

2
b + �

2
" + 2�s;b�s�b

�
� 2�s

�
�s + �s;b�b

�2
= 2�s

�
�2b + �

2
"

�
+ �s;b�b

�
�2s + �

2
b + �

2
"

�
:

Hence,
d 

d� s
=
�b
�
�2s + �

2
b + �

2
"

�
[var (m)]2

"
�s;b +

2�s
�
�2b + �

2
"

�
�b
�
�2s + �

2
b + �

2
"

�# d�s
d� s|{z}
(�)

:

This, together with

 =
Cov (s;m)

var (m)
=

�s�b
var (m)

�
�s;b +

�s
�b

�
;

implies that

d 2

d� s
= 2 � d 

d� s
? 0 i¤

�
�s;b +

�s
�b

�"
�s;b +

2
�
�2b + �

2
"

��
�2s + �

2
b + �

2
"

� �s
�b

#
7 0:

Part (b) Di¤erentiating the expression in (F.3) with respect to � b gives

d 

d� b
=
�s
�
�s;bvar (m)� 2

�
�s + �s;b�b

� �
�b + �s;b�s

�	
[var (m)]2

d�b
d� b|{z}
(�)

:

The term inside the curly brackets can be simpli�ed as follows:

�s;bvar (m)� 2
�
�s + �s;b�b

� �
�b + �s;b�s

�
= �

�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
:

Hence,
d 

d� b
= � ��s

[var (m)]2
�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

� d�b
d� b|{z}
(�)

It follows that

d 2

d� b
= 2 � d 

d� b
? 0 i¤

�
�s;b +

�s
�b

��
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
? 0:

This completes the proof.
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G. Additional Numerical Examples

In this section we provide additional numerical examples that can help illustrate the theoretical

results in Proposition 6 in the main text. Examples 1-4 concern the result in part (a) of the

proposition, i.e., when b�s + b�b is su¢ ciently larger than �s + �b: Example 5 concerns the result

in part (b) of the proposition, i.e., when �s + �b is su¢ ciently larger than b�s + b�b:
Example 1 This is a continuation of the �rst example in the main text. To show that a large

polarisation-enhancing disagreement is needed for the results shown in Figures 5(a) and 5(b) in

the main text, we consider two other cases: In the �rst one, we lower the values of b�s and b�b to
0.25, while keeping �s = �b = 0:2: In the second case, we set �s = �b = 0:25 and b�s = b�b = 0:20
so that disagreement is polarisation-reducing. Other parameters are kept unchanged, i.e., 
 = 1

and � 2 f3; 5; 10; 25; 35g : The welfare gains in these two cases are shown in Figures G1(a) and

(b), respectively. In both cases, the welfare gain from polarisation is a concave graph in � " but

strictly increasing. This is true over a much wide range of � ":

Example 2 In this example, we examine the e¤ects of changing 
; which captures the bene�ts

of holding o¢ ce for the political parties. As in the �rst example in the main text, we set (�s; �b) =

(0:2; 0:2) and
�b�s; b�b� = (0:5; 0:5) :We consider two di¤erent values of �; which are 5 and 25, and

�ve di¤erent values of 
; which are f0:5; 1; 2; 5; 10g : For each pair (�; 
) ; we compute the degree

of policy polarisation x�eq and the welfare gain from polarisation,
�
W
�
x�eq; �v

�
�W (0; �v)

�
; over

a range of values of � ": The results obtained under � = 5 are shown in Figure G2, and those

obtained under � = 25 are presented in Figure G3.

In general, increasing the value of 
 will intensify the political parties�o¢ ce motivation and

encourage them to converge. In terms of our notation, this will raise the threshold value of � for

polarisation to emerge under a given value of e�; i.e.,
�min �


p
2�e� :

For instance, when � = 5 and 
 = 10; the o¢ ce motivation is su¢ ciently strong so that convergent

equilibrium will emerge (i.e., x�eq = 0) under the speci�ed range of signal precision � ": On the

other hand, a lower positive value of 
 has the e¤ect of lowering the critical value of � " beyond
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which
dW

�
x�eq; �v

�
d� "

< 0:

In other words, when 
 is strictly positive but small, it is more likely that an improvement in

signal precision is welfare-reducing. The same pattern is also observed in Figure G3. This happens

because political parties have a strong incentive to diverge when the o¢ ce motivation is weak.

This is thus consistent with the intuition related to Figure 3 in the main text .

Note that in the proof of part (a) of Proposition 6, the critical value of � " is independent of


: The results in Figures G2 and G3 suggest that this is true only when �!1:

Example 3 In this example, we examine the e¤ects of changing (�s; �b) while holding their

sum constant. As in the �rst example in the main text, we set 
 = 1;
�b�s; b�b� = (0:5; 0:5)

and �s + �b = 0:4: But now we consider �ve di¤erent combinations of (�s; �b) ; which are

f(0:4; 0) ; (0:3; 0:1) ; (0:2; 0:2) ; (0:1; 0:3) ; (0; 0:4)g : The results obtained under � = 25 are shown

in Figure G4. Recall that the coe¢ cient  is de�ned as

 � �s

�s + �b + �
�1
"
:

Therefore, holding � " and (�s + �b) constant, a decrease in the magnitude of �s will weaken

the learning e¤ect and suppress polarisation. In the extreme case when �s = 0 (but �s + �b >

0);  = e� = 0 and a convergent equilibrium will emerge. These e¤ects are observed in the

upper panel of Figure G4. The lower panel shows that a higher positive value of �s tends to

amplify the magnitude of welfare gain (or loss) from policy polarisation, i.e., increase the value of��W �
x�eq; �v

�
�W (0; �v)

�� ; as well as the curvature of the graph. The diagram clearly shows that

voters su¤er a welfare loss when � " is high and that any further increase will lead to even greater

loss.

Note that changing the value of
�b�s; b�b� while holding their sum �xed will have no ef-

fect on the degree of polarisation and welfare gain. This is because
�b�s; b�b� a¤ects x�eq and�

W
�
x�eq; �v

�
�W (0; �v)

�
only through the variance term varp (m) in e�2; and varp (m) � b�s +b�b + ��1" :

Example 4 In this example, we consider values of
n
�s; �b; b�s; b�bo that are signi�cantly di¤erent

from those used in the �rst example in the main text. Speci�cally, we now set 
 = 1; � = 25;

(�s; �b) = (2; 2) and b�b = 0:We then consider �ve di¤erent values of b�s; which are f2; 4; 6; 8; 10g :
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The results are shown in Figure G5. The lower panel shows that when b�s + b�b is su¢ ciently
greater than �s + �b = 4; improvement in signal precision can be welfare-reducing as predicted

by part (a) of Proposition 6.

Example 5 In this example, we set 
 = 1; � = 1 and �b = 0:1 as in Figures 6(a) and (b) in the

main text. But we now consider a much larger value of b�s and b�b; which is b�s = b�b = 0:4: Figure
G6 shows the results obtained under �ve di¤erent values of �s; which are f1; 2:5; 5; 7:5; 10g : The

lower panel shows that when �s is large, so that �s + �b is su¢ ciently greater than b�s + b�b; then
improvement in signal precision can be welfare-reducing.
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Figure G1(a) Numerical Results of Example 1 

 

Figure G1(b): Numerical Results of Example 1 
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Figure G2: Numerical Results of Example 2 when φ = 5. 
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Figure G3: Numerical Results of Example 2 when φ = 25. 
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Figure G4: Numerical Results of Example 3. 
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Figure G5: Numerical Results of Example 4 
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Figure G6: Numerical Results of Example 5 
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