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A. Proofs

This section contains the proofs of all the theoretical results mentioned in the main paper, except
Proposition 1. The proof of Proposition 1 is shown separately in Section B of this document.
Proof of Lemma 1

We begin by noting that (s,b,m) has a joint normal distribution with mean vector ! and

covariance matrix X given by

Hes Jg w )‘5
l"’T = My and ET - w O'% )\b ’
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where pi,,, = pg + py, W = pgp0s0p and o2 =wvar (m) = A\s + Ay + 2. By Theorem B.7 in Greene
(2012, p.1042), the distribution of (s,b) conditional on m is a bivariate normal distribution with

mean vector

Hn = + 0_2 )
o m Ab
and covariance matrix
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Consequently, the marginal distribution of s in the voters’ updated belief is a normal distribution

with mean

As
E(s]m):us—i—a—Q(m—,um),

m

which is the the first element in p’; and variance

2

var (s |m) = o — —=-,

AL
o

which is the (1,1)th element of ¥’. This completes the proof of Lemma 1.



Proof of Corollary 1

Part (i) By Proposition 1, if ¢ > vh (0) /2, then the extent of equilibrium polarisation is given

by
“ 4h(0)p+2

Substituting & (0) = 1/ (6v/27) into (A.1) and rearranging terms give

* 2\/%&&—7 . m¢(5_amin)

YT 220+ Vane) | 20+ 2r6

, where omin =

_r
2021

Differentiating this with respect to o yields

dx:q B \/ﬂ(b (2¢ + \/ﬂamin) <0

do (26 + V275)”
Part (ii) Differentiating (A.1) with respect to ¢ yields

dzl, 1+~ (0)

dé  [2h(0) ¢+ 1)

The upper bound is obtained by considering the limit of z7, when ¢ — oo, which is

lim ¥, = lim 20—9h(O)] _ 1 _ T.&
goo 1 oheo [4h(0) o+ 2] 2n(0) V2 7
This completes the proof.
Proof of Lemma 2
The coefficient 7 is defined as
o= Cov(s,m) As
= war(m) Mt
Using (A.4), we can get
dip? d 2 A2
dre dre 12 ()\S + N+ Ts—l)

(A1)

(A.2)

(A.4)

Furthermore, it is clear that vary(m) = X + /)\\b + 721 is decreasing in 7.. This completes the

proof.



Proof of Proposition 2

The main ideas of the proof have been explained in the main text. Here we only need to verify

certain details. From (A.4), we can get

Iny? =2In A, —2In (A, + Ay + 72 1)

:>d1n¢2:%d—7;
>\s+)\b+7's Te
dlny? 2 1 2 1
= ny’ _ 2 =
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which is equation (15) in the main text. Similarly,

1 dre

dln’UCLT‘ m) = -——=<————-
» (m) Ne + Ny + 721 T2

dlnvar, (m) 1 1 1 1

dlnT, Te }\\S _|_Xb+7-€—1 Te vary (m)’

which is equation (16) in the paper. Substituting (15) and (16) into (14) gives

dlnt. 7.

d1n 5> 1{2 1}

var (m)  wvarp(m)

d&* B a2 [2var, (m) — var (m)

= -
dre T

] 20 iff  2var,(m) 2 var(m).

(LR V]

var (m) - vary, (m)
This completes the proof.

Proof of Corollary 2

According to Proposition 3,

ds? do
p— 2~
dre g

g =20 iff  2var, (m) 2 var(m).
Te

The condition 2vary, (m) 2 var (m) can be equivalently expressed as
2 (Xs +Xb> NE TO WRED VN St

@7;12)\5+/\b—2<X5+X,,).



If 2 (XS + Xb) > As+Ap, then the above condition implies that for any 7. > 0, 2var, (m) > var (m)

must be true. Hence,
do?
dre

>0  forall 7 > 0.

This establishes the result in part (a).

But if Ag + Xy > 2 (Xs + /):b> , then we have 2var, (m) 2 var (m) if and only if

1
Aot =2 (A + %)

TeST

/
€

This in turn implies

This establishes the result in part (b).

Proof of Lemma 3
As is evident from (A.4), ¥ < 0 if and only if A\s = o2 + psp0s0p < 0. Provided that o5 > 0,

op >0 and p,p, € (—1,1), this is true if and only if

Os
—-1< < ——.
ps,b o

The assumption o5 < o3 is necessary to ensure that this range is nonempty. This completes the

proof.

Proof of Proposition 3

Straightforward differentiation based on (A.4) yields

2 2
) Do (A4 At 7Y)
dyp? dp 20 (N +721) . )
=2¢- = >0 iff N+ H) 0.
dAs De ™ Dot ) o (Vo+77) 2

Note that the sum As + A, must be positive because A\s + Ay = var (s + b) in the voters’ initial
belief. Therefore, A\s and A, cannot be both negative. This means A\, + 7 L'~ 0 must be true
under defiant learning and it is not possible to have A4 (Ab + 7'6_1) > 0 when A; < 0. Therefore,

under defiant learning, /2 is strictly decreasing in A,. This completes the proof.



We now explain how to relate changes in {\s, Ay} to those in {O’S, O, ps7b} . Recall the definition
of {)\s, )\b} s i.e.,

2 2
As =05 + Ps pTs0b, and A\, =0} + Ps pTs0b-

Totally differentiating \; and A, with respect to {as, O, ps,b} gives
dX\s = (205 + p,p0b) dos + p,yosdoy + oso4dpy y, (A.5)

dXy = pgpopdos + (205 + ps,bas) dop + osopdpg - (A.6)

Using these equations, we can derive situations in which \s; changes but ), is held fixed (and vice
versa). We will give two specific examples to illustrate this point.

Suppose there is no change in o} so that dop = 0. Then according to (A.6),
dX\y =0 if and only if  os0pdpsy, = —pspopdos.
Substituting this into (A.5) gives d\s = 20sdos. Therefore, when doj, = 0,

dp=0 and dA\;20 & doy=0 and dp,, = — %
’ g

dos.

s

Suppose now there is no change in pg; so that dp,j, = 0. Then according to (A.6), d\, = 0 if

and only if
Psp0b
doy, = ———dos.
20'() + ps7b0-5
Substituting this into (A.5) gives
d 2 d eyt
s = ( Os +Ps,b0b) Os — m O
dogsop + 2p87b (a§ + 0%)
dos.
200 + Psb0s

In the special case of pyj, =0, As = o2 and \, = o2. It follows that
d\p =0 and d\s 20 <& dos=20 and dop=0.

This concludes the proof of Proposition 3.



Proof of Lemma 4

Using the definition of Cov (s,m) and var (m), we can rewrite (A.4) as

_ Cov(s,m) o+ PspTsTb A7)
~war(m) 02+ 02+ 02+ 2p,,050h )

(8

Differentiating this with respect to p,  gives

dp _ osop  Cov(s,m)

dpsy,  var(m)  [var (m)]?

osop [var (m) —2Cov (s,m)]

-2050p = )

[var (m))*

where
var (m) — 2Cov (s, m) = ag + o'g — gg,
Hence,
dyp? d
Y =2 ¥ =0 iff C’ov(s,m)(ag—i—ag—gz)%o.
dps,b dps,b

Suppose g < 0s. Then by Lemma 3, defiant learning is not possible, so it must be the case

that As = Cov (s,m) > 0. It follows immediately that

da)?
dps,b

2
s

>0 if oi+oizo

Suppose g > 0, which implies 0% + 02 — 02 > 0. Hence,

2
dy >
dps,b

0 & Cov(s,m)=0s(0s+ps0) 20 &  p>——.

This completes the proof of Lemma, 4.



Proof of Lemma 5

Pick any ¢, € R. Conditional on m, voter v’s expected utility if R wins is
y

= —E[(0y+s—al,)" | m]

= B (60 +vm—aly+5—vm) | m]

= B |0y +vm = 21,)* = 2(8, 4+ m — a,) (s = vm) + (s = ¥m)” | m
— _E (5 +m — a7 )2|m}—var(s|m)

= — {(6v - .’Eeq) + 2 (6, fm:q) vm ~+ (Ym)* + var (s | m)}

The second-to-last line uses the fact that E (s | m) = ¢¥)m, hence

[(5 +¢m_meq) (S—Wn) ’m] - (5 +¢m—$eq)E[(5—¢m)|m]:0

and F [(s —ym)? | m} =wvar(s|m).

Similarly, the voter’s expected utility if L wins is
E (U (~atyi80,5) | m] = = { (60 +25,)" +2 (6, + i) vm + (¥m)* + var (s | m) } .

Under the voters’ prior belief, the signal m follows a normal distribution with mean zero and
variance var (m). Therefore, ¥m is a normal random variable with mean zero and variance
var (Ym) = (o*Jf)2 = tp?var (m) . Let G (-) be the corresponding cumulative distribution function.

Before m is realised, the voter’s expected utility is

S) 0
W(qu;év) = /0 FE [U (x:q;év,s) |m] dG (m) —i—/ooE[ ( eq,év,s) \m] dG (¢m)

1
= — [ (6 — xzq)2 + % (6, +x:q)2 + var (s | m)}

2
_ [2 (5, —a%,) /0 " mdG (m) +2 (5, + a7, / (; YmdG (wm)}
- [ wm) e wm)

= daj, /OO YmdG (yYym) — [53 + (mzq)Z +wvar (s | m) + 2var (m)] ) (A.8)
0



The last line uses the fact that G (-) is the cdf of a symmetric distribution around zero, hence

00 0 o)
/_ YmdG (ym) =0  and /_ YmdG (yYm) = _/0 YmdG (Ym) .

Using the formula,

o0 |
/ 22" exp (— Az?) da = ﬁj for A>0and n=0,1,2,..,
0
we can get
/OO YmdG (Yym) = 1 /°° Ymexp — [2 (UT)2]_1 (¥m)? b d (Ym) = i
i Vrot Jo var

Substituting this into (A.8) gives

* 2 . * )2
%% (a:eq; 5U) = 2\/;:136an — (:ceq) — [53 +var (s | m) + D2var (m)] . (A.9)
Finally, by the law of total variance, we can get

var (s | m) + ?var (m) = 7, L. (A.10)

S

To see this, first recall that p, in the voters’ subjective prior belief is normalised to zero. Hence,

the variance of s in their prior belief is given by

;' =var(s) = E (s*) = E[E (s | m)],

s

where the outer expectation is taken with respect to the distribution of m. It follows that

Tlo= E{var (s|m)+[E(s| m)]Q}
= war(s|m)+*E (m2)

= war (s | m) + *var (m).

The second line uses the facts that var (s | m) is a deterministic constant according to equation

(4) in the main text and E (s | m) = ¢»m. The last line uses the fact that E (m) = 0. This proves



(A.10). Substituting (A.10) into (A.9) gives

%% (ZC:q; 5v) = [2 EJT - xzq] :c:q — ((512, + 78_1) )

™

This completes the proof.

Proof of Proposition 4

As mentioned in the main paper, polarisation is welfare-improving if and only if

. 20—7h(0) \FT
Ogmeq—74h(0)¢+2§2 o (A.11)

The second inequality in (A.11) can be rewritten as

& 2v201 [41(0) ¢ + 2] > 2y/7¢ — V/7vh (0)
& 420" + /ryh (0) > 2 [\f — 4V20Th (0)] é.
There are two possible cases: If v/ — 4v/20Th (0) < 0, or equivalently,

_ [vary (m) <

o
ot var (m) ’

SEIS

then the second inequality in (A.11) is automatically satisfied for all ¢ > 0. This means
w (xzq; 51,) > W (0;0,) for any xi, > 0.
But if /7 — 4v/207h (0) > 0, or equivalently,

_Jvary (m)

°
ot var (m)
then the second inequality in (A.11) holds if and only if

_ W2l Vmh(0)  vA(8e-7+1)
~ 2 [T —4V201h(0)] 22 (75 —dot)

Obviously, the second part of this proposition is meaningful only if there exists {’y, &, o', 5}

that satisfy all the conditions. Specifically, let S be the set of (v, of, 5) € R3 such that 5 > 4ot /7

10



and

VT (80t -5+ 7)
2v/2 (15 — 4o')

y
2275

We now show that this set is non-empty. Pick any v > 0. For any & > 0 and o > 0 that satisfies

2 ¢min =

7o > 4ot the above inequality can be rewritten as
To (80Jr -0+ 7) >y (WE — 40T)

& 8ol - 52 + 4y0' > 0. (A.12)
Note that (A.12) is true for all & > 0 and ot > 0, therefore S is non-empty. This concludes the
proof.

Proof of Proposition 5

Suppose var (m) = var, (m), which implies ¢ = &. Then equation (22) in the main paper can

be rewritten as
2 N _
w (xzq; 5v) = [2\ / —0 = a:eq] xzq — (512] + 7 1) ,

for any z7, > 0, or equivalently for any o > omin. Differentiating this with respect to 7. yields

dW (x*q' (57,) \/5 do  dz* 2 dz*
e TR |9,/ 2 . E—— e — | =4
dr. [ m dr. dr. Teg + 770 Teq dre
2 do 2 dz}
= /= .. 2 Z5— | =4
T Teq dre + [ 71'0 xeq] dre
2 2 dz}, | do
- 9 Zop 55—zt q ) Al
{\/; Teg + ey xeq] do } dr. (A.13)

The last line use the decomposition

* * ~
dxeq B dxeq do

dr.  do  dr.

By Proposition 2, do/dr. > 0 when var (m) = vary, (m) . Hence, we will focus on the expression
inside the curly brackets in (A.13), which involves both z7, and its derivative with respect to o.

As shown in the proof of Corollary 1, x7, can also be expressed as

\/ﬂ(ﬁ (5 - Umin)
20 + V2710

* (= —
zz, (0) = max { ,0} , where oy, =

_x
221

11



The notation z7, (¢) highlights the dependence of z7, on ¢. Also, for any & > omin,

dqu (5) . m¢ <2¢ + mo’min)

— = > 0. (A.14)
do (ng + 277(7')2
From this equation, it is obvious that
d?xt, (0) -
2 <0, for any o > omin, (A.15)
o

which means z¢, (o) is strictly increasing and strictly concave when it is strictly positive. This

also implies that for any o > oy > 0,

dzt, (o V2 V2
() _ T VAT \/F (A.16)
do 20 + V20O min 2
These facts will be useful later on.
Define an auxiliary function A : [omin, 00) — R according to
I P 2, | dwg, (o)
A(o) = \/; xo, (0) + —0— Ty (J)] 5 (A.17)

which is the expression inside the curly brackets in (A.13). Since x}, (0min) = 0, we can get

2 dal, (3)
A min) — ~—Omin * q~
(7min) \/;U do |~

For 0 > opin, the expression in the squared brackets in (A.17) can be expanded to become

25 — 2 (5) = \/> V27¢ (G — omin)

m “ 2¢ + V2wo
_ \/> |:5 7T¢ ( Urnin) :|
T 20 + 270
B 2 2152 — (m —2) ¢0 + TPO min
N 7 2¢ + 270 '

We will determine the sign of this expression by considering the quadratic equation:

V2152 — (1 — 2) ¢7 + TP min = 0. (A.18)

There are three possible scenarios, which are shown in Figure Al.

12



Case 3

. Case 2
Xeq(0) '

| Case 1

|
a
Tmin \ a"

Figure Al.
Case 1 Suppose equation (A.18) has no real roots. This happens when

(1 —2)2¢? — 421 - TP min = (1 — 2)% ¢ — 277 < 0.

It follows that v/2752 — (m —2) 0 + TPomin > 0 for any & > opin, which is equivalent to

2_ .| dzt, (o)
~—
(+)
dw (z* ;51) ~ o >
N (:req ) =2A(3) - do > 0, for any ¢ > opmin.
dr. dre

13

(A.19)



Case 2 Suppose (A.18) has a repeated real root, which happens when (7 — 2)2 #? = 27v. Let
0 > Omin > 0 be the repeated root. Then we have

2 2. ~
\/;ar = xy, (0r) and —0 — Ty, (0) >0,

T
for any ¢ > oy and o # o,. When evaluated at ¢ = o,

2
A(oy) = — zg, (o) > 0.

For any 0 > omin and o # o, (A.19) will continue to hold. This again implies that W (x:q; 50)

is strictly increasing in 7. whenever z¢, > 0.

Case 3 Suppose (A.18) has two distinct real roots, denoted by ¢’ and ¢”. This happens when
(m— 2)2 #? > 2m7y. As shown in Figure Al, both roots must be strictly greater than ompn > 0.
Without loss of generality, suppose ¢” > ¢’ > oy > 0. From Figure A1, it is obvious that for

any o € [omin,0'] U [0”,00), we have

with strictly equality holds only at ¢’ and ¢”. Therefore, for these values of &, we have A () > 0.

For any o € (¢/,0"),

Differentiating (A.17) with respect to o gives

o 2 dx}, (o) | dxg, (0) 2. L d%;fq(g)
A(U)_lz\[r o ] dz +[\/;’xeq((’)]d#'

() s (=)

Recall that xzq (o) is strictly increasing and strictly concave when & > opin, therefore its second-

order derivative is strictly negative. By (A.16),

dz* (5 5
#@ < T ~1953 < 2\[ ~ 1.596.
do 2 T

Hence, the expression insider the first squared bracket is strictly positive. This means A (o) is

14



strictly increasing within the range (¢’,¢”), therefore

A(o) > A(o') = \/z ST, (0') >0, foranyas e (¢/,0").

Taken together, these prove that when (1 — 2)? ¢% > 2wy, A () > 0 for any & > omin. As a result,

AW (x%:5,) d5

—9A (5) - G > Omin.
ar. 2A (o) ar > 0, for any 0 > omin

This concludes the proof of Proposition 5.

Proof of Proposition 6
Part (a)

Differentiating equation (22) in the main paper with respect to 7. gives

AW (233 00 2 dz; 2 f
MZQ [\/703[_53*]56‘14_2 2 o do (A.20)
T

dr. €\ dr, T “ddr.
To derive the derivative of o with respect to 7., first recall

)\2

S

2
(aT)z = p?var (m) = [C(’)} var (m) = P w—

var (m)
Differentiating this with respect to 7. gives

9t dot _ 1 A2 1 (O'T)2
dre T2 (A + X+’ TEXA N T

dot 1 ot 1 ot
dre 272X\, + )\ + 71 272war (m)

= > 0. (A.21)

Note that this derivative is independent of ¢. It follows that the second term in (A.20) must be
strictly positive when zg, > 0.

The derivative of z7, with respect to 7. can be broken down into two parts:

dx* dx?* s
Veg _ Meq 40 (A.22)
dre do dr.

~——

(+)

As shown in Corollary 1, z7, is strictly increasing in ¢ when it is strictly positive. The second

15



part can be derived as follows. Recall that

A2 (XS + 2+ T;1>
Ms+X+720)7 0

Cov (s, m) 21)@7" m) —

var

5% = y2var, (m) = [
Taking the logarithm of both sides yields
215 = A2 + In (Xs W +T;1> —2In (As + M+ 70Y)

Differentiating both sides with respect to 7. gives

do 1 o 2vary, (m)
= . —1;. A.23
~ dre 212 war,(m) { var (m) } ( )

3
Note that neither (A.21) nor (A.23) depend on ¢. Therefore, on the right side of (A.20), only 7,
and its derivative with respect to o are dependent on ¢.

In particular, we know from Corollary 1 that

li —0.
Jm i =[50

dx* e
li eq _ o
¢1—>Holo< do > 2

Using (A.14) we can get

These imply

lim

[dW(eq,é)] _ [ w] & 2 [ dot

9 L
p—00 dre 2 alT6 + T 2 o dre
T
= iT5). 90, 5 do A24
[(0 27)" dTE dTJ ' (4.24)

The two standard deviations & and of can be related using

~ vary (m XS—FX +T§1
G =1(re,A) 0l where 7 (¢, ) = w;’((m)) R )\Z —= >0 (A.25)
s 3

The notation 7 (7., A) highlights the dependence of n on 7. and A = ()\8, Ap, Xs, Xb> , but for now

we will simply write this as 7.

16



Substituting (A.21), (A.23) and (A.25) into (A.24) gives

AW x:q;év Aot 2 ™
bl [(d)] = 05 e 00 )
_ M [(1 _T 2 — 2
-~ 12var, (m) 277) (20" = 1)+ ]
n- (o)

3 2 _ T
- - ~ 32— Zn+1).
T2vary (m) (7”7 Tt

Note that cubic equation

<I>(77)E7r773—3772—g77+1:0

has three distinct real roots: -0.6322, 0.4382 and 1.1490; attains a local maximum at n = —0.1994
and a local minimum at n = 0.8360. In particular, ® (n) is strictly positive and strictly increasing

for any n > 1.1490. It follows that

dre

¢—00

] aw (xzq; 51,)
lim | —————=| <0  when n (7., A) > 1.149.

Using (A.25), we can rewrite the second inequality as

Ns + Ap + 71

W (1.149)% ~ 1.320
S 15

S As Ay — 1.32(As + Ap) > 03277

0.32
Te > =<

= =71.>0.
As + A — L.32(Ns + \p)

This proves that when Ay + Ap > 1.32 (As + o),

dre

p—00

dW (z? ;04
lim [W] <0 when 7. > 7.

This establishes the result in part (a).

Part (b)

The desired result can be obtained by establishing the facts below:

Fact 1 For any given (As,)\b,xs,/):s) , the parties’ perceived uncertainty 52 converges to the

limit &>, when 7. increases indefinitely.

17



Fact 2 Suppose Ay > 0 and 3\\5 + /)\\S > O'?nin. Then there exists a unique threshold value A, > 0

such that 530 > g2, for any As > A
These two facts together ensure that, when 7. approaches infinity, the extent of policy polar-
isation z7, (o) will tend to the limit z7, (0o0) which is strictly positive. According to (A.14) in

the proof of Proposition 5, 2%, (7o) > 0 implies dx},/do > 0 when evaluated at Goo.

Fact 3 For any given </\s,/\b,Xs,Xs> , lim (dO’T/dTe) > 0.

Te—00

Fact 4 As shown in Corollary 2 part (b), whenever Ag+ A\, > 2 (Xs + /)\\b) , there exists a unique

threshold value 77 > 0 such that

do
dre

<0 for any 7. > 7L.

Fact 5 Suppose A > 0 and A, + Ay > (7/2)? (XS + Xb) . Then there exists a unique threshold
value 77 > 0 such that

Zot — 22, (3) >0 for any 7. > 77.

These five facts are valid when A\g > 0, Ay > 0, //\\5+Xb > a?nin and A\g+ Ay > (77/2)2 (Xs + Xb) .

Taken together, they imply

Te—00

dre

2
= 2 lim (\/70T — :L"ch> - lim <
Te—00 i Te—00

(+) =)

fim [dW (aszq; 6v) ]

do - lim qu + 2\/5 2t (o) lim do <0
dr. ) 7e—oo \ do T L L 7e—o00 \ dT,
~ (+) =

—~

+)

and therefore establish the desired result.

Fact 1 follows immediately from the definition of 72, ie.,

2 (7% N —
9 Cov (s,m) 2 As (As + X+ 72 1)
0" = |————=| varp(m)= 5
var (m) (As + X+ 721)
)\g /)\\S + /)\\b
R Chel ey
Te—00 ()\8 + )\b)

18



Note that 52, > o2, if and only if
X (X +R) > 0in O+ )

& (X + X = 0hin) A2 = 20200 — 02\ > 0. (A.26)

Consider the quadratic equation
5\ 3 2 2 _
(AS + A — mln) >‘ mm)‘b)‘ mln)‘b =0.

mm)\Q > 0, hence it has two distinct real

The discriminant of which is given by A =4 (XS + Xb>
roots. The assumption /\ + )\b > amm > 0 implies that the product of the two roots is negative.
In other words, there is one positive and one negative real root. Since we focus on positive values

of Az, we will consider the positive root alone which is given by

TminAb |:O'min + (Xs + Xb)]

Ae = e —
)\s—i-)\b—amn

>0, when A\, >0. (A.27)
It follows that for any A\s > A. > 0, (A.26) holds and hence & (7 > J - This establishes Fact 2.
Fact 3 follows immediately from (A.21), which states that

W1 o1
dTg 2T§AS+)\I)+T&‘_1 27’2 (>\5+)\b+7—;1)%

.I.
= lim <d0 ) —0
Te—oo \ dTe

The last step is to establish Fact 5. According to Corollary 1,

x (= P
To, (o) < \/ga,

for any given . Using this, we can get

\
q—:—
|
8
*
S
v

S
- 2 (- 17)
= 2o (Vo - 3 fear om)).

19



Note that \/var (m) > §+/var, (m) if and only if

var (m) = As + Xp + 721 > (g)Qvarp (m) = (g)2 </>:s + 2+ 75_1)

eaen- (5) () [(5) - ]

(5)° -1
As + Ay — (%)2 (3\\3 + Xb)

ST > =77>0.
The last line uses the assumption that As + Ay > (7/ 2)2 (XS + /):b) . Therefore, if A; > 0 so that
1 > 0, we have

Zol =22, (3) >0 whenever 7. > 77.

This proves Fact 5.

Note that if A\, = Ay = 0, so that A, = o2 and As = 62, then 52, = 62 and the positive root

in (A.27) becomes A, = 0. It follows that

i [dW (mzq; o)

. ~ ™
<0 if Og > Omin and o > — - 0.
dre 2

Te—00

This establishes the result in part (b) and concludes the proof of Proposition 6.
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B. Proof of Proposition 1

B1. Preliminaries

The purpose of this subsection is twofold: (i) To introduce some additional notations that are
frequently used in the proof and (ii) to establish an intermediate result. Define an auxiliary

function VV/R : R? — R according to

/2 ifeg =z,
WR(«TR§«TL)E (I)R(:L’R;:L’L) ifxp >z,
Ur(xgr;xr) ifep <xr,
O (wpiwr) = [(or — 6)° = (zr — 6)° +9] [1 - H @),
Ur(erian) = (oL - 0)° = (wr—0)’ +9| H (@),
where T = (z1, +2r) /2 and H (-) is the cumulative distribution function of N (&,5%) with &
normalised to zero. Then party R’s expected utility can be expressed as

Wi (xg;21) = Wr (zg;21) — (2 — ¢)2,

Obviously the term — (x;, — ¢ R)2 is irrelevant for R’s policy choices. Hence, it suffice to focus on
17\73 (zgr;xr), which we will refer to as R’s “effective” expected utility. By the same token, party

L’s effective expected utility is given by

v/2 ifzp =zp,
WL ($L§xR) = D (mL;$R) ifzg >z,

\I/L (CCL;:L’R) ifa:R<a:L,

where

O (vrizn) = |(wr+ ) — (2 +0)” +1] H (@),
Vi (erizn) = |(@r+ ) — (@ +6) +9) [L- H @),

It is important to note that both ®g (zg;zr) and @, (z;xR) are continuous at xr = 1, even
when Wg (zg; 21) and Wy, (x1; xr) are not (due to the discontinuity of the winning probability

function at xp = x).
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Let Bg (z1) denote R’s best-response correspondence under a given zy, € R, i.e.,

Br (xp) = argmax {VNVR (xR;xL)} :
zr€eER

Party L’s best-response correspondence Bz, (zg) is similarly defined.

Let (27,2%) € R? be a pure-strategy Nash equilibrium of the voting game, so that TR €
Br (x7) and o} € B, (x7,) . At this stage, we do not confine ourselves to symmetric equilibria. In
particular, the results presented in this and the next subsections are valid even if z}; # x7. We
begin with an intermediate result which specifies the relevant range of 23 and x7 in any kind
of equilibrium under quadratic utility for the political parties. This result is well-known in the
existing literature and is often stated without proof. We include the proof here for the sake of

completeness.
Lemma B1 Any voting equilibrium (x7},x%), if exists, must satisfy —¢ < a7 < ap < .
Proof of Lemma B1 The proof of Lemma B1 is organised into three main parts.
Part I For any xp € R, xp € Br (z1) implies

¢—\/(z2 =0’ +v<azr <o+ (zr —9)* +7. (B.1)
Similarly, for any xr € R, xp € By (zg) implies

6wt 0Pty <wr <o+ ento) . (B2)

Proof of Part I Fix x; € R. If R chooses xg = x1, then its effective expected utility is

Wh (zp;31) =

N |2

> 0.

Hence, it is never optimal for R to choose any x i that yields a negative effective expected utility.

In other words, any zr € Br (1) must satisfy

(. —¢)* = (xr—¢)° +7 =0 (B.3)
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which is equivalently to (B.1). The condition in (B.2) can be obtained by applying the same

argument on party L. l

Part IT  Any voting equilibrium (z7},x%,) , if exists, must satisfy «}, € [—¢, ¢] and =} € [—¢, @].

Proof of Part II We begin by showing that if 27, > ¢, then either R or L will have an incentive
to deviate. Hence, in equilibrium it must be the case that z7, < ¢. Using this, we can prove that
x7, < ¢. The proof that 27 > —¢ and x}, > —¢ is largely similar and hence omitted.

Suppose the contrary that x% > ¢. Then there are four exhaustive and mutually exclusive
scenarios: (i) xf > ¢ > a7, (ii) o} > 2] > ¢, (iii) 2 = 2] > ¢ and (iv) ] > x} > ¢. It should
be understood that all (z7},x%) considered below satisfy the inequalities in (B.1) and (B.2), so
that (B.3) and

(r+9)° = (xL+¢)°+7>0 (B.4)

are satisfied.

Scenario (i) Suppose z}, > ¢ > x7. Then party R’s effective expected utility is given by
O (i) = [(a ~ 0 - - 0 4] {1 H |5 kv )| |

If R lowers its policy choice to ¢, then its effective expected utility becomes

va(oai) = [wi-0f+a] {1-# S0+ ap)|]

> [ - 0P - wh-or 4] {1-n 60+

v
*

:xL_¢)2_(m*R_¢)2+ﬂ {1—HB(:1:}%+:CE)”

= ®p (m*Ra m*L) .

The third line uses (B.3) and the fact that H (-) = 1—H (-) is strictly decreasing. This shows that

R will have an incentive to deviate to zr = ¢. Hence, 3, > ¢ > x] cannot be an equilibrium.

Scenario (ii) Suppose 2} > 2} > ¢, which implies that § (2% + 2% ) > ¢ > & = 0. Therefore,

we have

H [; (2% + xz)] > H(0) = % (B.5)
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(B.6)

1
:>1—H|:2(:B*R+.’L'2):| <

DN |

If %, > a7 > ¢, then R’s effective expected utility is
* * 1 *
O aiioy) = (01 - 0 - h - 0 +9] {1- 1 [ h+ 1) .

Note that x% > x% > ¢ also implies (2% — ¢)> > (2% — ¢)*. Combining this, (B.6) and v > 0
gives

I

O (¢R;27) <7{1 - H [; (ac*R—l—x*L)]} <

o2

where v/2 is R’s effective expected utility when choosing xr = 27} . This gives R an incentive to

switch to zp = z7.

Scenario (iii) Suppose z} = x] > ¢, which again implies (B.5). Suppose now R lowers its

policy choice to ¢. By doing so, R’s effective utility becomes

1

Ur(pa]) = [(wL—¢)2+7}H[2

0+ 1)
> yH B (¢>+w’£)} >71

The last inequality uses (B.5). Thus R will deviate from zp = 2} > ¢ to zr = ¢.

Scenario (iv) Suppose ] > z} > ¢. We now show that party L will have an incentive to

deviate. Party L’s effective expected utility under x7 > 27, > ¢ is

Ui (agioh) = (w4 o - @i+ 0 40] {1 S mvan)] .

Note that zj >z} > ¢ > —¢ implies (z] + ¢)2 > (2 + ¢)2 . Using this and (B.6) gives

v (aiian) <o {1 |+ ai|} <

D[ =2

This shows that L will be strictly better off by switching to 7 = 2% > ¢.

To summarise, we have shown that either R or L will have an incentive to deviate when
xR > ¢. Hence, any voting equilibrium must involve 2%, < ¢. We now show that 7 must also be
bounded above by ¢.

Suppose the contrary that 7 > ¢. Since we have already ruled out the cases when z7 > z7, >
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¢ and x}, > =] > ¢, there are only two remaining cases to consider: (a) 7 > ¢ > 7 and (b)

x] > ¢ =Th.

Scenario (a) Suppose 2] > ¢ > x7},. Then R will prefer to deviate to ¢. To see this, start with

R’s effective expected utility under 27 > ¢ > %, which is

Vn(ohia) = [0 - (o~ 0 +0] # |5 e+ o)
< :(xz —¢)°+ ﬂ H B (xR + xz)]

< [ —or+a] 3

0+ x’z)] U (Giah).

The third line uses the fact that H (-) is strictly increasing. This shows that R will be strictly
better off by deviating to ¢.
Scenario (b) Suppose z} > ¢ =z}, > —¢, which implies (¢ + 9)? < (a7 + $)? and

i B (¢+mz)} <H@O) =5

Using these, we can show that L will be strictly better off by choosing the same policy as R.

Formally,

WiGaiio) = [(0+07 i+ of ] {1 [ oran]}
<7
2

< frn b))

Hence, 7 > ¢ = x} cannot be an equilibrium. This proves that both z7 and z7 must be
bounded above by ¢.
Using a similar line of argument, we can show that both 2% and z7 must be bounded below

by —¢. The details are not shown here. l

For any zj € R, define a subset of R according to

SR(JUL)E{UCRGR1¢— (xL—¢)2+'7§$RS¢}-
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Similarly, for any xp € R, define

SL(a:R)E{xLER:—¢§$LS—¢+ ($R+¢>)2+7}-

Taken together, Parts I & II establish that any voting equilibrium must satisfy 7, € Sg (]) and

Iz €Sy (CU*R) .
Part III  Any voting equilibrium (x7,x%), if exists, must satisfy x] < 7.

Proof of Part III Suppose the contrary that x7, < 7. Then there are two possible scenarios:

(A) 3 (2 +2%) <0, and (B) & (%, +23) > 0.
Scenario (A) In this case, we have

N | =

H [; (e + xz)} <

Since both z} and x} must be bounded above by ¢, x}, < x7 implies (z}, — $)? > (a7 — ?)?.
Using these observations, we can show that R is strictly better off by choosing the same policy
as L. Starting with R’s effective expected utility under =} < 27,

Un(ohia) = [ -0 - (oh— 0 +0] # [} e+ 03]

1
< vH [2 <x§+wz>] <

o2

This proves that R will have an incentive to deviate.

Scenario (B) In this case, we can show that L will be strictly better off by choosing the same

policy as R. The proof is similar to Scenario (A). In this case, we have

1 . 1
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Since both z7}, and z7 must be bounded below by —¢, 2}, < x} implies (z} + ¢)2 > (xf + gi))z

)

Party L’s effective expected utility in this scenario is

Up(ahiek) = [@h+9) (e +9) 4] |1
< o{i-n|Jerrap)|f <3

Therefore L will have an incentive to deviate from TR < to xy = x%.

M\Q’_/H

This rules out z7; < z7 as a voting equilibrium, which proves the statement in Part III. Taken
together, Parts I to III establish that —¢ < 27 < 2% < ¢. This completes the proof of Lemma

Bl m

B2. Some Preliminary Results

In light of Lemma B1, it is clear that only ®r (xg;xr), ®r (z1;xR) [i-e., the part of WR (xr;xr)
and Wy, (z1;xr) when zp > xr] and /2 are relevant for equilibrium analysis. In this subsec-
tion, we present three preliminary results that are related to the maximiser of ®r (xg;zr) and

&7 (zp;xR). These results are the main ingredients in the proof of Proposition 1.

Lemma B2 For any xz; € R, there exists at most one value of xr in [z, @] that solves the

first-order condition
dPr (xRr;xr)

= 0. B.7
. (B.7)

Proof of Lemma B2 Fix z, € R. The first-order and second-order derivatives of ®r (xr;zr)

with respect to zg are, respectively, given by

Bnloriot) i, of —(on- 0P +4] B @) - 2er-OH@. (B3
TR

2 T ==/

TR = L[ 0f — a0 +4] T @

—2(zp — ¢)H (%) — 2H (). (B.9)

Evaluating the first-order derivative at xg = ¢ gives

d®g (zRr;r)
drp




This shows that it is never optimal for R to choose zp = ¢.

Let 2, be a solution of (B.7), or a stationary point. Then we have

(w1 =0 = (¢ = 0)* 41| T (@) = 4 (5, ~ ) H (@)

= (mL—¢)2— (IL‘/R—¢)2+’Y:4(ZLJR— )%, (B.10)

where T = (z, + 2’;) /2. Substituting (B.10) into (B.9) and rearranging terms gives

d2(I)R (.%'R; .T}L)

2
dzp

—wh-0) | 2O @) ol ()| - oH (=
= (R ¢)[H’(a;)H() 2H()] 2H (T).

TR=1'g

It is known that both H (-) and H (-) of a normal distribution are log-concave functions [see

Bagnoli and Bergstrom (2005) for details]. This means

21 FF (= -, — 12
d lng(fﬂ) :Ii(;r) Ii(f) <0, foranyTeR,
i HE |H@

YH' () >H (z)>2H (7), for any T € R, (B.11)

This, together with z’; < ¢, guarantees that

2o (xr;xr)

< 0.
dx%%

vr=xl,
The shows that any solution of the first-order condition in (B.7) will also satisfy the second-order
condition for maximisation.

Finally, we show that there exists at most one solution to (B.7). Suppose the contrary that
there are two distinct stationary points, say «; and ;. Without loss of generality, suppose =, <
z'y < 2'h < ¢. Then by the above result, both z, and z/, will satisfy the second-order condition
for maximisation. This means there exists e; > 0 and 2 > 0 such that (i) zf < 2y +e1 < 2;—e9,
(ii) @R (xR; ) is strictly decreasing over the range (25, 23 + €1) , and (iii) ®r (zg; 1) is strictly

increasing over the range (z7, — €2, 2%,). Since ®r (zg;xr) is continuously differentiable in zg,
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there must exist at least one other stationary point zf; between z', and z’, that is a (local)
minimum. This contradicts the fact that any stationary point must satisfy the second-order
condition for maximisation. Hence, ', and z'; must be the same point. This completes the proof

of Lemma B2. B

Lemma B3

(i) For any x1, € R, if the following condition holds
%H (1) — 2 (x, — ¢) H (x1) <0, (B.12)

then ®g (zp;xr) > Pr(xRr; L) for all zi € (zL,9].
(ii) For any xr, € R, if the following condition holds,

%H’ (zr) = 2(zr — ¢) H (x1) > 0, (B.13)

then there exists a unique value hg (1) € (v, $) such that ®glhgr (xr);xL] > Pr(xR;zL)

for all xp € [z, ).

Proof of Lemma B3 Fix z7 € R. Consider the first-order derivative of ®p (xg;xr) in (B.8),
which is strictly negative when evaluated at xr = ¢. Hence, ®g (zg;z1) is strictly decreasing as

xR approaches ¢. When evaluated at xg = x, the same derivative becomes

d®r (zR; L) — TH (wr) = 2(xr — ¢) H (x1) .
dCCR TR=X], 2

The sign of this expression depends on the shape of H (-) and model parameters. There are two
possible scenarios, which are stated in (B.12) and (B.13).

First consider the case when (B.12) holds with equality. This means zp = z, is a stationary
point that satisfies the first-order condition in (B.7). By Lemma B2, zp = z is the unique
maximiser within the range [z, @] so that ®r (zr;xr) > Pr(xg;xr) for all zg € (xr, @] . Next,
suppose (B.12) holds as a strict inequality, which means ®r (xg;xr) is strictly decreasing at
xr = xr. We now show that ®r (zg;xr) must be strictly decreasing over the entire range of
[z, @] so that it has a single peak at xg = x . Suppose the contrary that the first-order derivative

of ®p (xg;xr) in (B.8) is strictly positive at some Zg € (xr, ¢). Since Pr (xg;xr) is continuously
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differentiable in zg, there must exist two other values, z/; and 27, in (zr,¢) such that (i)
z'y < Tp < &%, and (ii) both 2/, and 2/, are stationary points, i.e., (B.7) holds. This, however,
contradicts the result in Lemma B2. Hence, ®g (zr;z1) must be strictly decreasing in xr over
the entire range of [z, ¢] when (B.12) is a strict inequality. This scenario is depicted in Figure
B1 Panel (a). This proves the statement in part (i).

Next, consider the case when (B.13) is valid, which means ®r (xg;xy) is strictly increasing
at tp = xr. Since ®p (zg; xr) is continuously differentiable in x g, there exists a value hg (z1) €
(zr,¢) that solves the first-order condition in (B.7). By Lemma B2, hgr(zz) is unique and
satisfies the second-order condition for maximisation. Hence, ®r [hr (1) ;2] > PR (zg;x1) for
all xgp € [z, #]. This scenario is shown in Figure B1 Panel (b). This completes the proof of

Lemma B3. B

*r L1 X hg(xp) ¢

Panel (a) Panel (b)

Figure B1: The Shape of ®r (zg;z1) .

The third preliminary result establishes similar properties of ®1, (z1;zg). The proof uses the

same line of arguments as in Lemmas B2 and B3, hence it is omitted.

Lemma B4

(i) For any xr € R, if the following condition holds

TH (wr) = 2(vr+ ¢) H (zr) > 0, (B.14)
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then @1, (xr;xRr) > @r (xr;xR) for all xp € [—¢,zR).

(ii) For any xr € R, if the following condition holds
TH' (wr) =2 (g + ) H (v) < 0, (B.15)

then there exists a unique value hr, (xgr) € (—¢, xR) such that @, [hr (xg);xr] > Pr (v1;TR)

for all xp, € [—¢,zR].

B3. Main Proof

We now proceed to the proof of Proposition 1.

Part (a) If we set 7, =0 in (B.12), then we can get

TH O 20 HO0) = 1h0) +o<0= o<

It follows from part (i) of Lemma B3 that
Bp (0;0) = % > ®p(zp;0), forallap e (0,4

This means choosing zg = 0 is R’s unique best response to xy, = 0. Likewise, if we set zg = 0 in

(B.14), then we can get
7h (0)
2

TH'(0) = 26H (0) = > 6.

By the first part of Lemma B4,
@L(O;O):%><I>L(xL;O), for all 7, € [—¢,0),

which means choosing 27, = 0 is L’s unique best response to zr = 0. Hence, 2, = 27 = 0 is a
(symmetric) voting equilibrium when ¢ < vh (0) /2.

To prove that it is a unique symmetric voting equilibrium, suppose the contrary that there
exists another one with o3, = —2] = Z.q € (0,¢). In other words, 2} = Z, is an interior

solution that maximises ® g (zr; —Teq) Over the range [—Zeq, @] . The first-order condition for this

31



maximisation problem is given by

dOPR (xR; —Teq) _
d.%'R

(<Geqg = 0 = (wr = &)’ +1| H @ ~2(an — 9) H (@) = 0.

N |

Since this is a symmetric equilibrium, T = 0. Substituting this and zr = ., into the above
condition gives

(~Teq — 0)* — (Teq — 0)* + 7| H (0) = 4(Teq — ¢) H (0)

-~ 20—9h(0)

= Fog = <0.
T T 4ph (0) +2 =

The negative sign follows from ¢ < ~h(0) /2. The last line contradicts the presumption that
Teq > 0, hence, 3, = z7 = 0 is the unique symmetric voting equilibrium when ¢ < vh (0) /2.

This establishes part (a) of Proposition 1.

Part (b) Suppose ¢ > vh (0) /2. Define

xeq—m>0.

Following the argument in part (a), zg = z}, is the unique value that satisfies the first-order

q

condition
d(I)R (l’R; —a:zq)
drp

=0.

As shown in the proof of Lemma B2, this means xp = z}, is the unique value that maximises

q

dr (:L'R; —x:q) over the range [—asgq, ¢] . Consequently,

Op (2}, —xh,) > P (—a},; —ab,) =7 [1— H (—x},)] > % = Wr (—xb;—xh,) - (B.16)

The last inequality follows from the facts that v > 0 and H (—xzq) < 1/2 as w7, > 0. Note that

WR (zg;xr) is discontinuous at g = xp, (except when xy, = 0), i.e.,
WR (_:U:q; _x:q) ?é q)R (—LU:q; _;U:q) 3

due to the discontinuity in R’s winning probability. The last part of (B.16) thus ensures that R

has no incentive to deviate from zp = z7, to xg = —a7,. This proves that choosing zp = g,
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is R’s unique best response to x, = —x,. Using the same line of argument, we can show that
choosing xy, = —z7, is L’s unique best response to g = x,. It follows that 2% = —z7 =27, >0
is the unique symmetric polarised equilibrium when ¢ > vk (0) /2.

To see that the convergent equilibrium z}, = 27 = 0 cannot emerge in this case, we will
use the result in part (ii) of Lemma B3. Note that ¢ > ~vh(0) /2 can be obtained by setting
xzr, = 0 in (B.13). Then this result states that there exists a unique value hr (0) € (0,¢) such
that @ [hgr (0);0] > ®r(xg;0) for all xr € [0,6]. In other words, choosing xr = 0 is not R’s
best response to xz, = 0 when ¢ > vh (0) /2. Hence, 7, = 2} = 0 cannot be an equilibrium. This

establishes part (b) of Proposition 1 and concludes the whole proof.
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C. Extended Model with Multiple Signals

Belief and Information

In this section, we present an extended model in which voters receive imperfect information about
the hidden state s € R from n > 1 different sources prior the election. Each information channel
i € {1,2,...,n} produces a noisy public signal m; which is potentially biased. Specifically, let
m; = b; + s + ¢;, where b; € R is an unknown parameter that captures the inherent bias of the
ith information channel and €; € R is the error term in m;, for all ¢ € {1,2,...,n}. Voters share
the same subjective prior belief about the state variable s and the biases b = (b1, ..., bn)T. This

is assumed to take the form of a joint multivariate normal distribution N (g, ¥¢) , where

o2 Qf
Ko = s and 3o = °
H Q@ %

In the above expressions, ji, and o2 are scalars representing the mean and variance of the marginal
distribution of s; whereas p; and 3, are the mean vector and covariance matrix of the marginal
distribution of b.! The covariances between s and b are captured by the 1-by-n row vector
QF = (w1,...,wy) , where w; = Cov (s,b;) . A positive w; means that b; is expected to exaggerate
or complement the effect of the hidden state. A negative value, on the other hand, means that
voters expect b; to contradict or subdue the effect of s.

The error terms, € = (g1, ..., sn)T , are drawn from a normal distribution N (0, X.) . Each ¢; is
independent of the distribution of political attitudes d,, and the voters’ prior belief about (s, b).
The statistical properties of € are known to both voters and political parties.

Given the voters’ prior belief, the signals m = (my, ..., mn)T have a joint normal distribution

with mean vector

Mo = ths - 1n 4y,

where 1,, is an n-by-1 column of ones, and covariance matrix
T

= Xy +02-1,10 + 3.+ Q1f + QT1,,. (C.1)

Equation (C.1) suggests that the quality of the signals (as measured by the inverse of ¥,,) is

L All the covariance matrices appeared in this document are assumed to be (at least) positive semidefinite.
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determined by three groups of factors:?> (i) the precision of the voters’ subjective prior belief, as
captured by 75 = o2 and the inverse of 3, (ii) the precision of the signal errors, as captured by
the inverse of X, and (iii) the covariances between s and b contained in €.

After observing the public signals, voters update their belief about (s,b) using Bayes’ rule.
The marginal distribution of s in the posterior belief is characterised in Lemma C1. In order to
state this result, we need to introduce two additional notations: Define A = E | (s — p,) (m—p,,)7 |,
which is a 1-by-n row vector containing the covariance between s and m. The ith element of A

is \; = Cov(s,m;) = 02 + w;. Let k;; be the element on the ith row and jth column of the

precision matrix X!, The proof of Lemma C1 is shown later in this section.

Lemma C1 The marginal distribution of s in the voters’ posterior belief is a normal distribution

with mean

E (s | m) =iy + > oy (mj = g = ) ) (C.2)
j=1
and variance
var (s | m) = o2 — Z Ajag, (C.3)
j=1

where o = Y70 ik j for all j € {1,2,...,n}.

Similarly to the model in the main text, voter v’s ideal policy is given by
0y =0+ E(s|m).

If xp # a1, then this voter will support R if either (i) zg > z1 and ¢, > T, or (ii) g < xr and
oy < 7.

In the presence of multiple signals, the two political parties’ common belief about (s,b) is
given by a normal distribution N (ﬁo, f)o> with

2ﬁT

s

Hy Q %,

)
=
»
)
Q)

The elements of i, and f]g can be interpreted similarly as those of g and 3. Under this belief,

?Except for some special cases (such as those considered in Sections D and E), there is no general formula for
1. Hence, the discussion here should be considered as heuristic in nature.
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each signal m; has an expected value E, (m;) = Jis + fi,. The covariance structure among the n

signals is determined by
Covy, (mi,m;) = Couy, (b, b;) + G2 + Cov, (s,b;) + Cov, (s,b))

where Cou, (b;, b;) is the (i, 7)th element of 3, and Cov,, (s, b;) is the ith element of €2, for all 7,
j€{1,2,....n}. We use the subscript “p” to indicate that these moments are derived from the

parties’ belief. From the parties’ perspective, E (s | m) is a normal random variable with mean

n

Ep[E (s | m)] = fi = g + 3 0 [ (i — o) + (g, — 1, )| (C.4)
j=1
and variance
vary, {E (s | m)} = 5% = ZZaiajCovp (mi, my) . (C.5)
i=1 j=1

To derive (C.5), we first rewrite (C.2) as

n n n
E(s|m)= (1= a;| p, =) ajum, + Y am;.
j=1 j=1 j=1

The first two terms in the above equation are deterministic constants. Hence, we can write
n n n
var, {E (s | m)} = vary, g a;m;j | = E E a;o;Covp (my, my) .
j=1 i=1 j=1

The rest of the model is the same as described in Section 2 of the main text. In particular, the

characterisations of z7, in Proposition 1 and Corollary 1 are unchanged.

Proof of Lemma C1

The proof is based on a well-known result concerning conditional multivariate normal distribu-
tions. This result is as follows [see, for instance, Greene (2012, p.1042, Theorem B.7)]. Suppose

[X1,X,] has a joint multivariable normal distribution N (u, 3), where

b My and 5 Y1 X2

Mo o1 XYoo
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The marginal distribution of X; is given by N (u;,3;;) for i € {1,2}. Then the conditional

distribution of X given Xs is normal with mean vector

By = py + 1085 (X2 — py)

and covariance matrix

S =31 — T2 Doy

In order to apply this result, first note that (s, b, m) has a joint multivariate normal distrib-

ution with mean vector ! and covariance matrix 37 given by

s or 2 A
plh = m and »T=| QT X, ©
", AT e’ x,

The meaning of A in the covariance matrix has been explained in the main text. The covariances
between b and m are captured by the n-by-n matrix @ = F [(b — Ky) (m—,um)T . The (7, 7)th
element of © is denoted by 6; ; = Cov (b;m;) = w; + Cov (b;,bj). Note that this notation is
different from the one in the main text where we use Ay to represent the covariance between b
and the signal.

Using the theorem mentioned above, the posterior distribution of (s, b) after observing m is

a normal distribution with mean vector

! Hs A -1
n = + X (m_y’m)v (CG)
Hy, ©
and covariance matrix
o2 Q A
> = — o [ AT @7 } : (C.7)
o = e

It follows that the marginal distribution of s in the voters’ posterior belief is also normal. To

derive the posterior mean and posterior variance of s, we first define x;; as the element on the
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ith row and jth column of ¥, Then

)\1 )\n
R1,1 R1mn mi1 — My,
A 1 011 O1,n
X (m_y’m) =
S
Kn,1 Kn,n Mn = My,
i Hn,l Qn,n ]
)\1 )\n n
ijl K1,j (mj - Mmj>
011 O1,n X
n
ijl Kn,j (mj - Mmj>
Hn,l Qn,n
- ~ - n-by-1
(n+1)-by-n

The first entry in the resulting (n + 1)-by-1 vector is

A 1 (m—p,,) = Zn: Zn: AiKi j <mj - ij) .

i=1 j=1

Substituting this into (C.6) gives the posterior mean of s,

E(s|m) =

Similarly,
A1
()
97171
A1
B 011
97171

n n
Hs + Z Z AiKij <mj - Mmj)

i=1 j=1

= g+ 2”: <§”: AH%’,j) (mj — ,umj) .
j=1 \i=1

———
a;
An r
K1,1 Kln A1 011
Hl,n
Rn,1 Kn.n An Hl,n
en,n -
An r
n n
dojo1 k1A i k1,0
Hl,n .
n n
| Djm1Fnghy g Fnggfg
en,n
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The (1, 1)th element of the resulting (n + 1)-by-(n + 1) matrix is

n n
AE;}AT = Z Z )\ilﬂi’j)\j.
i=1 j=1
Substituting this into (C.7) gives the posterior variance of s,

var (s | m) = 02 — i <i )‘i"i,j> Aj.
j =1

Jj=1

This completes the proof of Lemma C1. B
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D. Unbiased Independent Signals

In this and the next section, we consider two special cases of the multiple signal model. In both

cases, voters’ posterior expectation of s and parties’ perceived uncertainty can be expressed as
E(s|m)=1vym and 5% = 2var, (M),

where m is a sufficient statistic of the observed signals {m, ..., m, } and ¥ captures the responsive-
ness of voters’ posterior expectation to m. Similar to the model in the main text, the coefficient
1 captures the learning effect while vary, (m) captures the uncertainty effect.

In the current special case, it is assumed that (i) both voters and politicians believe with
certainty that all n signals are unbiased so that each b; is a deterministic constant and normalised
to zero, and (ii) the error terms {e1,...,&,} are independently drawn from different probability
distributions. Specifically, each ¢; is assumed to be drawn from a normal distribution N ((), 7’;1) ,
where 7, is the precision of m;. The expressions of E (s | m), var (s | m) and &2 are shown in

Lemma D1. The proof of Lemma D1 and Proposition C1 will be shown later in this section.

Lemma D1 Suppose all the signals are unbiased and each €; is independently drawn from the

distribution N (0,7';1_1) for all i. Define ¥ and m according to

Z?:l Tsi

p= ==L s
Ts+ Z?:l Tey

>0 and m= Zgimi, (D.1)
i=1

where Ts = 0,2 and (; = 7e,/ Yty Te; for all i. Then the mean and variance of s in the voters’

posterior beliefs are given by

1
E(s|m)=vym and var (s |m) = ————. D.2
(s | m) = v (3 lm) = s D2
The political parties’ perceived uncertainty is given by 5> = ¢2varp (m), where
~ n
var, (M) = Ts+ 2 i1 Te (D.3)

Ts i1 Tes)
and Ty = 5, 2.
In this special case, the summary measure m is a weighted average of all the signals whereby

more precise signals are weighted more heavily. If the error terms {e1,...,e,} are i.i.d. normal
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random variables, so that 7., = 7. for all ¢, then the summation ) ;" | 7, in (D.1)-(D.3) will be

replaced by n7.. The parties’ perceived uncertainty then becomes

52 e (Ts +n7e)

Ts (75 + m'e)2 .

On the other hand, if voters and parties share the same subjective prior beliefs about s so that

Ts = Ts, then the parties’ perceived uncertainty becomes

52 Z?:l Tey

Ts (Ts + Z?:l Té‘i)'

Recall that policy polarisation will emerge in a symmetric equilibrium if and only if 52 exceeds

a certain threshold value o2 . Thus, understanding the relations between {7s,7s, Tc,, ..., Tc,, }
and &2 is essential in understanding how quality of information and disagreement will affect policy
polarisation.? To this end, we first examine the effects of changing {7, 75, 7c,, ..., Tc, } On 52 in

Proposition DI.

Proposition D1  Suppose all the signals are unbiased and each €; is independently drawn from

the distribution N (O,Tgil) for all .
(a) Holding other factors constant, an increase in either 75 or T, will lower the value of 2.

(b) Holding other factors constant, an increase in 7., for any i € {1,2,...,n}, will raise the

value of 1 but lower the value of var, (M) .
(¢) Holding other factors constant,

de?

dre,

20 if and only if 2vary, (M) 2 var (M) , (D.4)

for any i € {1,2,....,.n}.

The first part of Proposition D1 states that policy polarisation is less likely to emerge and
less severe when either voters or parties are more certain about the hidden state in their prior
beliefs. This result can be easily explained through the learning effect and the uncertainty effect.
As voters become more certain about s, they will be less reliant on the signals in the learning

process. Consequently, their posterior expectation will be less responsive to m (i.e., ¥ decreases).

3The threshold value o2, itself is independent of the precision parameters {7s,7s, ey, ..., Ten } -
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From the parties’ perspective, this means less er ante uncertainty in the median voter’s ideal
policy E (s | m), hence a lower value of 2.* As explained in Section 2 in the main text, this will
strengthen the parties’ office motivation and incentivise them to move closer to their opponent’s
position in order to boost their winning probability. Hence, an increase in 75 will lower polarisation
by weakening the learning effect. An increase in T4, on the other hand, has no impact on the
voters’ learning process. But as the parties’ become more certain about the hidden state, they
also perceive the signals as less uncertain. This suppresses the uncertainty effect and reduces the
extent of polarisation.

The other parts of Proposition D1 analyse the effects of changing a single 7., on 52. Part (b)
shows that such a change will have opposite effects on ¢ and var, (m) . Firstly, having more precise
signals will encourage voters to become more reliant on them when updating their beliefs. This
will enhance polarisation by strengthening the learning effect. An increase in 7., also means that
the signal m; becomes more precise which will curb the uncertainty effect and lower polarisation.

2

As in Section 3 of the main text, the overall effect on ¢~ can be determined by considering

dIn > dnsy  dlnwvar, (m)

dlnt., “dlnT, dlnT,

The first term on the right captures the contribution of the learning effect, while the second term

represents the uncertainty effect. As shown in the proof of Proposition D1,

dln Te 1
= — > 0.
dlnt., (X0 7.,)?var (i)
dInvary, (M) Te, 1
S s <0,
dlnT, (0, 7e,)° vary (M)

The interpretations are essentially the same as in the main text. The result in (D.4) can be
obtained by combining these equations.
We can also express this condition in terms of the precision parameters. In the current special

case, 2vary (m) 2 var (m) if and only if

T ?5 Z?Zl Te; (D 5)
s<?s+22?:17_5i- .

'In the extreme case when 7 is arbitrarily large, var (s | m) will converge to zero and E (s | m) will converge
to the expected value of s in the prior distribution, which is g, = 0. The median voter’s ideal policy then converges
to the median value of §,, which is a known constant. This eliminates the uncertainty faced by the parties and
paves the way for policy convergence.
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Thus, improving the precision of the noisy signals will increase [resp., reduce| perceived uncer-
tainty and polarisation if and only if 74 is greater [resp., less] than a threshold that is determined
by Ts and Y ;| 7,. Notice that if there is no disagreement between voters and parties so that
Ts = Ts and var (m) = vary, (M), then more precise signals will always lead to an increase in
52 and polarisation. This is no longer the case when voters and political parties disagree. In
particular, if the political parties are sufficiently more certain or more knowledgeable on the pol-
icy issue (the hidden state) so that 2var, (m) < var (m), then more precise signal(s) will reduce

polarisation.’

Proof of Lemma D1

Suppose each b;, i € {1,2,...,n}, is a deterministic constant normalised to zero, and suppose
ty = 0. Then (s,m) has a joint multivariate normal distribution with zero mean vector and

covariance matrix V given by

o2 AT
v=| ~ :
A X,
where A = ag X 1,. Given that each ¢; is drawn from the distribution NV (O, ogi) , where agi = 7';,1,

then the covariance structure of {my,...,m,} is given by

2 2 s e
o;+oz, fori=j,

Cov (m;, mj) = , —_
2 or i # j.

g

Hence, X,,, can be expressed as the sum of two n-by-n matrices,

S, =A+0%1,17,

where A is a diagonal matrix with diagonal elements (ng, v Jgn) . The inverse of ¥,, can be
derived using equation (3) in Henderson and Searle (1981, p.53). Specifically, this equation states

that for any matrix M = A + ruv’, where A can be any invertible matrix, r is a scalar, u is a

®Note that the expression on the right side of (D.5) is strictly lower than 7. Hence, part (c) of Proposition D1
implies
ds? . Ts Yty Tes ~
7 <0 iff 15 < M < Ts.
dei Ts +2 Zi:l Te,
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column vector and v’ is a row vector, the inverse can be expressed as
M 1=A"1—¢cAtuvTA L,

where
T

&= 1+rvIA-1u’

2

S

See also the “updating formula” in Greene (2012, p.992). Hence, by setting r = o
vl =17 we can get

»loAt A 11,1TA° Y

where
2
O-S

S T T

Since A is a diagonal matrix, its inverse is simply

Te, O 0
A-l 0 7g
| 0 Ten
TA-171 _ N\
It follows that 1, A='1,, => ", 7, and
¢ o? 1
- 2 n - n )
1+o3)iiiTe  Tst2isiTe,
where 7, = o 2. In addition,
2
Tey Teq Te1Teg Te1Ten
2
Al1,1TA 1= | T _ | Tt e
nly = ) Tey Tey *°° Tep | =
2
TEn TslTEn o oee .. TE,H/

Using (D.7)-(D.10), we can express the elements on any jth column of 3! as

2 . .
r., — &7, fori=j,

for i # 7,

K:lzj =
_gT&iT&j
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(D.8)

(D.9)

(D.10)



n n
Te,
= aj = Nikij =021, [1-6) 1. | = —cd—. (D.11)
J ZZ; 1hvi,g s Eg( ZZ; 5) Ts"i'Z?:lTEi

Substituting these and \; = o2 into Equations (C.2) and (C.3) in Section C gives

Yo T,y o Te,
E(s|m)= g oam; = : = Sae E Cimi,
Ts+2iiTer  TstDigTe, i—1
—_—

¥ i
where ¢; = 7.,/ Y iy Te, for all 4, and
| 1
var (s | m) = — — i = — i=l % )
( | 7-8 Z ! Tg 7'S Ts + Z?:l Te, Ts + Z?:l Te,

=1

What remains is to derive the formula for 2. Under the parties’ belief, the covariance structure

of {m1,...,m,} is given by

o2+ agj for i = j,
COUp (mi,mj) = N
o for i # 7,

s

for any ¢ and j. Substituting these into (C.5) gives
n n

n n
52 = Z Z aiajC’ovp (mi, mj) = Z (67 Z OéjCOUp (mi, mj)
i=1 j=1

i=1 j=1

n

~2 2 ~2

= E (o7} Ozi(ds—i-dsi)—i-é Q0
=1

J#i

n n n
= Za?agi —i—Zai-Zaj .52 (D.12)
i=1 =1 =1

Using (D.11), the first term in (D.12) can be simplified as follows:

n n 2 2 n
2 2 _ Te;Ogy . D1 Te
Oé,L' OE' == -
1 n n
=1

2 29
o (Ts T Te) (Ts + 2 ie1 Tey)

since 7'520' = 1 for all 7. The second term in (D.12) can be simplified as follows:
n n n 2
oYt - (Ta) 7
i=1 j=1 i=1
< D i1 Te >2 52
Ts+ 20 Te, °
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Hence, we can now rewrite (D.12) as

2
52 = > i1 T + < D i1 e > 52
(TS + Z?:1 Tai)z Ts+ Z?:l Tey 3
—1

S )| (s

i=1"'¢€i ~2

= < ! n > Te; + O
Tst 2ie1 Te; im1

¢2

The last step is to show that

-1
n
vary (m) = (Z Tgi> +52.

=1

First, note that
n
vary, (M) = wvary (Z Cﬂm)
i=1

= > G (Covy (miymy) = ¢ | 53> ¢+ ol
=1 7j=1 =1 7j=1

Since Z?:1 ¢; =1and Qiagi =, Tsi)fl for all 4, we can simplify the above expression to

become
n -1
~\ A2
varp (m) = o5 + g Te, .
i=1

. ~9 2 ~
This proves that o= = ¥“var, (M) .

Using 75 = 88_2, we can show that

ETsnan (D19)

Using the same line of argument and replacing 3? with 02, we can show that

vary, (M) =

B o1

var (m) =

which is the unconditional variance of m under the voters’ subjective prior belief. This completes

the proof of Lemma D1. B
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Proof of Proposition D1

As shown in the previous proof, the parties’ perceived uncertainty 52 can be expressed as

2 A~
52 — ( Z?:l Te; ) Ts + Z?:l Te;
Ts+ 21 Te, To D it Te,

P2 varp(m)

It is clear that any changes in 7, will only affect ¢ but not var, (m). Likewise, any changes in

7s will only affect var, (m) but not 1. Consider the logarithm of 1,

Iny =1In (Zn: T5i> —1In (TS + zn:Tai> .
i=1 i=1

Totally differentiating this with respect to {1, 75, 7¢, } gives

dvy Tg drs TsTe; dre,

— = :
(0 Ts+ E?:l Te; Ts (Z?:l Te,) (Ts + 2?21 Te;) Te

Suppose d7., = 0, then we have

dy 0 0 - do?

= — < 0.
drs Ts+ Y omqTe, dr

On the other hand, if drs = 0, then

@ _ 75 >0, (D.15)

dei (Z?:l 7_61) (TS + Z?:l 7_61‘)

Te, dy _ Te; Ts Te, 1

Vodre, S T Tst Yo Te D T€i>2 var (m)

The second equality follows from (D.14).

Similarly, totally differentiating In [var, (m)] with respect to {var, (m),7s, 7c,} gives

In [var, (Mm)] = In

n n
Ts+ ZT&] —In7, —In (Z 7'51.)
i—1 i=1

dvary (m) Yo Te, AT ToTe, dre,

varp (m) _?S + Z?:l Te; Ts (Z?:1 7e;) (Ts + Z?:1 Te;) Te .
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When all other factors except 75 are kept constant,

dvary @) _ —= Z?:ln% X ™) o = diz <0. (D.16)
dTs To+ D i 1Te; Ts dTs
If drs = 0, then
dvary, (M) Tsvary (M)
_ " <0, D.17
5 R TS S e (D-17)
Te, dvary(m) Ta Ts L Te, 1
vary (M) dre, i Ter (Ts + 2001 Te,) > 7e,)? vary (M)’

The second equality follows from (D.13). Equations (D.15) and (D.17) together prove the state-
ment in part (b).

Holding 7, and 75 constant, the overall effect of changing 7., on 52 can be determined by

O ., dvary (m)
52 dre, - Y dre,  wvarp,(m) dre,
2 1 Te,

p— 7

var (m) — wvary (M) | (S0, 7.,)%

Hence,
d&*

dre,

2 0 & 2var, (M) 2 var (m).

Using (D.13) and (D.14), we can show that

~

2T, < Ts

2uar, (M) = var (m if and only if = ,
p(7) 2 () Ts+ i1 Te, = Ts+ 2 i Tes

which is equivalent to

fa n
- Ts Zi:l Te;
s < = n .
Ts+2 Zi:l Te;

This completes the proof of Proposition D1. B
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E. Unbiased, Correlated and Exchangeable Signals

In this section we maintain the assumption that all signals are (believed to be) unbiased so that
b; = 0 for all ¢, but the error terms {e1,...,e,} are now assumed to be exchangeable normal
random variables. Specifically, this means each ¢; has the same marginal distribution with mean
zero and precision 7., and each pair (g;,¢;), ¢ # j, has the same covariance. The covariance

matrix 3. is now given by

I »p p
1 1
I 7, (E.1)
Te
P p 1_

where p > —1/(n — 1) is the correlation coefficient between any pair (e;,¢;), ¢ # j. The lower
bound of p is necessary for 3. to be positive semi-definite. The resulting expressions of E (s | m),
var (s | m) and &2 are shown in Lemma E1. The proof of Lemma E1 and Proposition E1 are

shown later in this section.

Lemma E1 Suppose all the signals are unbiased and the error terms {e1,...,e,} are exchange-
able normal random variables with zero mean vector and covariance matriz %, as shown in (E.1).

Define 1 and m according to

NnTe

v nte + 751+ (n—1)p]

1
>0 and mEnZ;mi.
1=

Then the mean and variance of s in the voters’ posterior beliefs are given by

1+(n—-1)p
nTe+ 751+ (n—1)p]

E(s|m)=1ym and var (s | m) =

The political parties’ perceived uncertainty is given by 5> = 1/12varp (m), where

Ts[1 —1
’UCLTp (’I’/T\'L) = T * Ts,r[LT—:_\(n ) p] .
eTs

The results in Proposition D1 can be readily extended to the current case with only minor
changes. These are formally stated in the first three parts of Proposition E1. The interpretations

are essentially the same as before, hence they are not repeated here.
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Proposition E1  Suppose all the signals are unbiased and the error terms {e1,...,en} are ex-
changeable normal random variables with zero mean vector and covariance matriz 3. as shown

in (E.1).
(a) Holding other factors constant, an increase in either Ts or Ts will lower the value of 52,

(b) Holding other factors constant, an increase in 7. will raise the value of ¥ but lower the

value of vary (m).

(¢) Holding other factors constant,

do?
dre <

V

0 if and only if 2vary, (M) 2 var (M) . (E.2)

(d) Holding other factors constant, an increase in p will lower the value of 1 but raise the value

of vary (m).

(e) Holding other factors constant,

5’ _ _
d;‘p 20 if and only if 2vary, (M) < var (m). (E.3)

The last two parts of Proposition E1 concern the effects of p on 52. A higher value of p
means that the signals {mj, ..., m,} are more correlated. In the extreme case when p = 1, all the
signals are essentially echoing each other. From the voters’ perspective, observing n > 1 perfectly
correlated signals is no better than observing a single one in terms of learning the hidden state.
Thus, a more positive value of p will erode the voters’ confidence on the signals and weaken the
learning effect.® The same increase in p, however, also raises the parties’ perceived variance of
i, strengthening the uncertainty effect. The overall effect on &> again depends on the relative
magnitude between 2var, (m) and var (m). Interestingly, the condition in (E.3) is the exact
opposite of the one in (E.2). This suggests that, for any given set of {7s,7s,7-,n,p}, 7 and p
tend to have opposite effects on 2.

In the current special case, 2var, (m) 2 var (m) if and only if

NT:Tg

2 .
TS o 7 L+ (n—1) ]

%The same idea has been put forward by Ortoleva and Snowberg (2015, p.518), but they have not explored the
relation between perceived sigal correlation and policy polarisation.
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Similar to the findings in Proposition D1, if there is no disagreement between voters’ and politi-
cians’ beliefs so that var, (m) = var (M), then an increase in the precision of the signals or a
decrease in the correlation between signals will raise the parties’ perceived uncertainty. However,
when voters and politicians disagree, it is possible that an increase in 7. or a decrease in p will
lead to a lower degree of perceived uncertainty. This happens when 7 is sufficiently higher than

Ts or when p is sufficiently low.

Proof of Lemma E1

Suppose p > —1/(n — 1). The inverse of ¥. can be shown to take the following form

1+ (n—2)p —p —p

. T —p I+ (n=2)p - —p
T 1+ (n=-2)p—(n—1)p?

(E.4)

To see this, note that all diagonal entries of £.3_1 are given by

1
I+(n=2)p—(n—-1)p

5[+ =2)p—(n-1)p] =1,

and all off-diagonal elements of .31 are given by

1
1+(n—=2)p—(n

—1) 2 {=p+[1+(n—-2)plp+(n—2)p*} =0.

Define the notation v according to

Te Te

Tl m-2p-m-1p (A-p+m-1)p]

The covariances among the signals {my, ...,y } are given by Cov (m;, m;) = 02+ Cov (g;,¢;) ,
which implies

S =3+ +021,17,

Using the same formula in (D.6), we can get

DI YL L S s P T (E.5)
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where

2
o 1

T1tols'1,  r,+ 10301,

§

It is straightforward to show that

175 M, =nw(l-p)=— 2
Lo 1+(n—-1)p (E.6)
nte + 75 [1+ (n—1)p]
On the other hand,
> 11,17s 7 =02 (1 - p)? 1,18 (E.7)

Using (E.5)-(E.7), we can write the elements on any jth column of ! as

vIL+(n—2)p — 21— p)? fori=j,

Kij =
—vp— &2 (1—p)? for i # j.

1

Using these and \; = 02 = 7, !, we can get

a = Y ik = Ti [V(l —p) —n&v* (1 - P)Q}
i=1 s

75[1+Z;;1)p] [1_ 1+ZZ€—§1)/)]

nte +7s[1+(n—1)p]

Hence, the posterior mean and posterior variance of s are given by

n
NTe 1
E = .- )

(s | m) nte + 7514+ (n—1)p] n;ml

(4

—_——
m

1 —~ \ 1+(n—-1)p
Uar(s|m)—78<1—zaj> CnTe+Ts[l+(n—1)p]

=1

From the parties’ perspective, the covariance structure of {mj,...,m,} is now given by

~—1 1 . .
T, +T for i = j,

Covy, (mi, mj) = AS ) : (E.8)
F ol fori £,
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and the perceived uncertainty is given by

52 = { NTe }211@7“ (m)
nTe + 75 [14 (n — 1) p] PR

where

N 1 n n
vary, (M) = ) Z Z Covp (m;, my)

j=1i=1

_ %Z{n?;lwgl 1+ (n—1)0])
j=1

nTe + 751+ (n—1) p]

_ E.9
NTeTs (E-9)
Using the same steps, with 7, ' replaced by 75! in (E.8), we can show that
1 -1
var () = et TslLH (=1 o] (E.10)

NTeTs

This completes the proof of Lemma E1. B

Proof of Proposition E1

Part (a) As shown above,

52 _ nT. 2.n75+?s[1+(n71)p]
NTe +Ts [1 + (n - 1) p] nTa?s

;g vary(m)

It is clear that any changes in 7, will only affect ¢ but not var, (m). In particular, ¢ (and hence

&%) is strictly decreasing in 7 when p > —1/(n—1). If p = =1/ (n — 1), then %, var, (M) and

2

52 are all independent of 75. On the other hand, an increase in 7, will lower &2 because

which is strictly decreasing in 74, and 1) is independent of 7.
Part (b) Consider the logarithm of ¥ and var, (m),

Iny=lnn+Inr. —In{nr. + 751+ (n—1)p|},
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Infvar, (m)] =In{nr. +7s[1+(n—1)p]} —Inn —In7, — In7,.

Holding {75, 7s, p,n} constant, consider the total derivatives of ¢ and var, (m) with respect to

Te, 1.€.,
dip s[l+(n—1)p dre 1+ (n—1)pdr.
B =—— (E.11)
v nte+T1s[1+(n—1)p] 7o nrevar (M) Te
—_——
(+)
dvary (m) Ts[l+(n—1)p] dre 14 (n—1)pdr.
~N — ~ e~ . (E.12)
vary (M) nte +7s[1+(n—1)p] 7¢ nrevary (M) 7e

These show that an increase in 7. will raise the value of ¢ but lower var, (m).

Part (c) The overall effect on 32 is determined by

T do? o Te dyp T dvary (m)

?de o Ed?e vary (M)  dre

Using (E.11) and (E.12), it can be shown that

d52
da 20 & 2var,(m) 2 var(m).
Te

The condition on the right side is equivalent to

~

2T, < Ts
nte + 751+ (n—1)p] < nte+7s[1+(n—1)p]

which can be simplified to become

< NT:Ts
ST+ Ts[1+(n—1)p]

T

This establishes the condition in part (c).

Part (d) Holding {7, 7s,7c,n} constant, consider the total derivatives of ¢ and var, (m) with

respect to p, i.e.,

@:_ Ts(n—1)p dp
(G nte+ 751+ (n—1)p] p’
dvary (m) Ts(n—1)p dp

var, (M)  nr-+7s[L+(n—1)p] p°
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Note that these equations are essentially the same as (E.11) and (E.12) but with opposite sides.
The desired result can be obtained by using the same steps as in part (c). This completes the

proof of Proposition E1. B
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F. Further Results on Learning Effect

In this section, we analyse the effects of changing {7, 73} on 1)? within the single-signal model in

the main text. Lemma F1 can be viewed as an extension of Lemma 4 in the main paper. When

voters and politicians disagree, i.e., when (s, \p) # (XS,X,,) , any changes in {74, 75} will not

affect vary, (m). As a result, their effects on 1?2 will translate directly to &> through the equation

Lemma F1
(a) Holding other factors constant,

2 (0‘% —1—0’?) Os

da)? , . o
=0 if and only i + — +

drs <

(b) Holding other factors constant,

2
av
dry

Proof of Lemma F1

_ _ o
0 if and only if <p5,b + O'S> [Ps,b (0’3 + O'g — Uz) + 20501;] 2 0.
b

(F.1)

Part (a) Given that Cov (s,m) = 02 + p, 0503 and var (m) = 02 + 07 + 02 + 2p, ,050p, We

can write
~ Cov(s,m) 0%+ Py p0s0b

var (m) 02+ 0%+ 02+ 2p,,0505

Differentiating this with respect to 7, gives

dy {(205 + pspob) var (m) — 20, (o5 + ps’bab)Q} do,
drs [var (m)]? its/
(=)

o6

(F.3)



The expression inside the curly brackets can be simplified as follows

(205 + pg pob) var (m) — 20, (05 + ,0571,01,)2

= (203 + Ps,bffb) (a§ + ag + og + st,bUsUb) — 205 (03 + ps’bab)Z

= 205(0,)—1—0 )—I—psbab(a —|—0b—i—a)

Hence,
dy oy (ag + 0% + Ug) n 20 (0% + Ug) dos
drg [var (m)]? Pab op (02402 +02) | drs

This, together with

Cov(s,m 050 O
Qp: ( ): b)<ps,b+>’

var (m) var (m

implies that

dyp?
drs drg

02+ 0+ 02) oy
Part (b) Differentiating the expression in (F.3) with respect to 7 gives

dy _ s {p&bvar (m) —2 (0'3 + ps,bab) (Jb + psjbas)} doy,

dry, [var (m)]? dry

(=)

The term inside the curly brackets can be simplified as follows:

Ps pVAT (m) —2 (as + p87bob) (O’b + p57bas)

= [Psb(U +0’b—0')+20'30'b]

Hence,
— = |psp (05 + O + 2050
dry, [var (m)]2 [,0 o ( b ) b] dry,
~—
(=)
It follows that
dﬂ)? d¢ . Os
Tm_ '(/J din lff ps7b+0'7b [psb(O' +O'b—0')+20'50'b]

This completes the proof.

o7

2

d . s 2 024—02 s
=21 - L 2 0 iff (ps,b—l-;) [PS’b‘F((b)U] §0.
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G. Additional Numerical Examples

In this section we provide additional numerical examples that can help illustrate the theoretical
results in Proposition 6 in the main text. Examples 1-4 concern the result in part (a) of the
proposition, i.e., when Xs + Xb is sufficiently larger than A\s + Ap. Example 5 concerns the result

in part (b) of the proposition, i.e., when A\s + Ay is sufficiently larger than XS + Xb.

Example 1 This is a continuation of the first example in the main text. To show that a large
polarisation-enhancing disagreement is needed for the results shown in Figures 5(a) and 5(b) in
the main text, we consider two other cases: In the first one, we lower the values of /):3 and }\\b to
0.25, while keeping As = Ay = 0.2. In the second case, we set A\s = Ay = 0.25 and /):S = /):b = 0.20
so that disagreement is polarisation-reducing. Other parameters are kept unchanged, i.e., v = 1
and ¢ € {3,5,10,25,35}. The welfare gains in these two cases are shown in Figures G1(a) and
(b), respectively. In both cases, the welfare gain from polarisation is a concave graph in 7. but

strictly increasing. This is true over a much wide range of 7..

Example 2 In this example, we examine the effects of changing ~, which captures the benefits
of holding office for the political parties. As in the first example in the main text, we set (As, \p) =
(0.2,0.2) and (XS, /):b> = (0.5,0.5) . We consider two different values of ¢, which are 5 and 25, and
five different values of v, which are {0.5,1,2,5,10} . For each pair (¢,v), we compute the degree

of policy polarisation z}, and the welfare gain from polarisation, [W (l‘zq, 51,) — W (0, 5v)] , over

q
a range of values of 7.. The results obtained under ¢ = 5 are shown in Figure G2, and those
obtained under ¢ = 25 are presented in Figure G3.

In general, increasing the value of « will intensify the political parties’ office motivation and

encourage them to converge. In terms of our notation, this will raise the threshold value of ¢ for

polarisation to emerge under a given value of 7, i.e.,

~
2wo

¢min =

For instance, when ¢ = 5 and v = 10, the office motivation is sufficiently strong so that convergent
equilibrium will emerge (i.e., Toy = 0) under the specified range of signal precision 7.. On the

other hand, a lower positive value of v has the effect of lowering the critical value of 7. beyond
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which

eq) Vv

dw (x* 0 )
—= <0
dre
In other words, when + is strictly positive but small, it is more likely that an improvement in
signal precision is welfare-reducing. The same pattern is also observed in Figure G3. This happens
because political parties have a strong incentive to diverge when the office motivation is weak.
This is thus consistent with the intuition related to Figure 3 in the main text .

Note that in the proof of part (a) of Proposition 6, the critical value of 7. is independent of

~. The results in Figures G2 and G3 suggest that this is true only when ¢ — oo.

Example 3 In this example, we examine the effects of changing (As, \p) while holding their
sum constant. As in the first example in the main text, we set v = 1, (XS,X,,) = (0.5,0.5)
and A\s + Ay = 0.4. But now we consider five different combinations of (As, ), which are
{(0.4,0),(0.3,0.1),(0.2,0.2),(0.1,0.3),(0,0.4) } . The results obtained under ¢ = 25 are shown

in Figure G4. Recall that the coefficient ¢ is defined as

As

v s+ X+ 72t

Therefore, holding 7. and (\s; + Ap) constant, a decrease in the magnitude of A\; will weaken
the learning effect and suppress polarisation. In the extreme case when A\s = 0 (but A\ + Ay >
0), v = ¢ = 0 and a convergent equilibrium will emerge. These effects are observed in the
upper panel of Figure G4. The lower panel shows that a higher positive value of g tends to
amplify the magnitude of welfare gain (or loss) from policy polarisation, i.e., increase the value of
‘W (x:q, (51,) — W (0, (5v)| , as well as the curvature of the graph. The diagram clearly shows that
voters suffer a welfare loss when 7. is high and that any further increase will lead to even greater
loss.

Note that changing the value of (XS’XO while holding their sum fixed will have no ef-
fect on the degree of polarisation and welfare gain. This is because (XS,Xb> affects x7, and

(W (:E;fq, dv) — W (0,6,)] only through the variance term var, (m) in 52, and var, (m) = X +

/):b—i-’r;l.

Example 4 In this example, we consider values of {)\ 55 b, XS, Xb} that are significantly different
from those used in the first example in the main text. Specifically, we now set v = 1, ¢ = 25,

(Asy Ap) = (2,2) and /):b = 0. We then consider five different values of XS, which are {2,4,6,8,10}.
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The results are shown in Figure G5. The lower panel shows that when Xs + Xb is sufficiently
greater than A\g + A\ = 4, improvement in signal precision can be welfare-reducing as predicted

by part (a) of Proposition 6.

Example 5 In this example, we set v =1, ¢ =1 and A, = 0.1 as in Figures 6(a) and (b) in the
main text. But we now consider a much larger value of Xs and /)\\b, which is Xs = Xb = 0.4. Figure
G6 shows the results obtained under five different values of A4, which are {1,2.5,5,7.5,10}. The
lower panel shows that when Ag is large, so that A\s + A is sufficiently greater than /)\\3 + Xb, then

improvement in signal precision can be welfare-reducing.
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Figure G2: Numerical Results of Example 2 when ¢ = 5.
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