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Abstract

Why do people form polarised opinions after receiving the same information? Why does

disagreement persist even when public information is abundant? We show that a Bayesian

model with potentially biased public signals can answer these questions. When agents are

uncertain and disagree about the bias in the signals, persistent disagreement and opinion

polarisation can readily emerge. This happens because uncertainty surrounding the bias

induces agents with diverse initial beliefs to form drastically di¤erent posterior estimates.

Prolonged exposure to these signals can in some cases drive the agents�opinions further away

from each other and also further away from the truth.
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1 Introduction

Disagreement is ubiquitous. From political discourses to academic debates to stock market pre-

dictions, disagreement exists and persists even when public information is abundant. On some

contentious issues (such as immigration and vaccination), people form diverging views even af-

ter receiving the same information, leading to opinion polarisation.1 These observations pose a

challenge to the canonical Bayesian learning model which contends that persistent disagreement

and opinion divergence will not occur in general. The current study is an attempt to reconcile

these con�icts between theory and evidence. Our approach is motivated by a separate but closely

related empirical literature which documents the pervasiveness of biased reporting in mass media

and a dwindling trust in them among the public.2 We show that when Bayesian learners are

uncertain and disagree about the potential bias in the commonly observed signals, persistent

disagreement and opinion polarisation can readily emerge.

Our analysis is built upon a prototypical Bayesian learning model in which economic agents

seek to infer an unknown state of the world (a payo¤-relevant parameter) from a stream of

noisy signals. We enrich this model by assuming that the random signals are not only fraught

with errors, they are also potentially confounded by another unobserved factor which we refer

to as bias. We emphasise on the word �potentially� because it is the agents� perceptions or

doubts surrounding the bias (rather than the actual bias) that drives our main results. This

point will become clear as we proceed. The unobserved bias is an inherent feature of the signal-

generating channel, hence it will a¤ect all the outcoming signals.3 As an illustration, consider

news reports from mass media. The content of these reports may contain factual errors or other

forms of unintended mistakes that are very costly (if not impossible) to eradicate. In terms of

modelling, these mistakes are typically formulated as an independent and identically distributed

�noise�process, which can be averaged out in a su¢ ciently large sample. But what makes into

the news in the �rst place is determined by a multitude of factors (editorial bias, viewership

concerns, pressures from sponsors and owner etc.) that permeate the news creation process

and a¤ect its content. Unlike the noises, this type of systemic bias cannot be easily �ltered

1Throughout this paper, we use the terms �opinion polarisation�and �opinion divergence� interchangeably to
refer to a situation in which two agents receive the same information but form opposite or contradictory opinions.

2Puglisi and Snyder (2015) provide a comprehensive survery on the empirical evidence of biased reporting in
traditional news media (newspapers and cable news). See Garz et al. (2020) for a more recent study. Empirical
evidence showing a receding con�dence in mass media can be found in Gallup (2024) based on US data and Newman
et al. (2024) based on data from a large group of countries.

3We only consider one source of public signal but our model can be readily extended to allow for multiple public
signals, each with an unknown bias. We choose the single-signal version to convey the key messages of this study
in the most straightforward manner, without burdening the reader with excessive technical details.

2



out through averaging. Similar examples abound in other contexts.4 The focus of this paper

is not on the reasons why news or other forms of information are biased. Our primary goal is

to analyse the implications of potentially biased signals on the Bayesian learning process. We

model systemic bias as a separate additive term embedded in each realisation of the signal and

make two important assumptions. First, the magnitude of the bias term is unknown, and second,

there is a lack of consensus regarding this magnitude among the agents. We argue that the

uncertainty or skepticism surrounding the bias is an important driving force that induces agents

with diverse initial beliefs to form drastically di¤erent posterior estimates.5 The e¤ect of this

skepticism exists even if the signals are truly unbiased (i.e., the true value of the bias term is

identical to zero). Moreover, continuous exposure to these signals can in some cases drive the

agents�opinions further away from each other and also further away from the truth.

To formalise these ideas, we hypothesise that when agents face a potentially biased information

channel, they form an initial subjective belief on both the hidden state and the unknown bias

term. Upon the arrival of new information, they revise their beliefs on these two parameters

jointly using Bayes�rule. We examine the implications of this learning process at three di¤erent

levels: individual, interpersonal and aggregate levels. We begin in Section 2 by considering a

single Bayesian learner who observes a sequence of serially independent but potentially biased

Gaussian signals. Using a conjugate bivariate normal distribution as the initial belief, the model

admits an exact closed-form solution for all subsequently revised beliefs. We show that this

sequence of beliefs is convergent and, importantly, the limiting distribution is dependent on the

initial belief. In Section 3, we compare two Bayesian learners who observe the same sequence of

signals but have di¤erent initial beliefs.6 Here we explore the conditions under which polarised

opinions about the hidden state will emerge in the limit. Finally, in Section 4, we extend our

analysis to a population of agents with heterogeneous initial beliefs. Here we focus on how pre-

existing disagreement about the bias term across the agents will a¤ect the extent of long-term

disagreement about the hidden state at the aggregate level.7

Before presenting our main results, we �rst recall the implications of unbiased signals as a

4For instance, systemic bias may arise in any kind of performance evaluation due to the evaluator�s cognitive bias
and value judgement, or due to a defective evaluation process which tends to favour certain type of evaluatees. More
generally, any ill-devised sampling or data collection method may lead to systemic distortions in measurements.

5By �estimate�and �opinion,�we are referring to the posterior mean, which is the minimum variance estimate
given the information available to an agent.

6When comparing across di¤erent agents in Sections 3 and 4, we assume that their initial belief can be represented
as a bivariate normal distribution but with di¤erent parameters.

7 In order to single out the e¤ects of the unknown bias term in public signals, we do not consider other sources
of information (such as private signals and communications among the agents) in Sections 3 and 4.
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point of reference. Consider an environment in which all the signals are truly unbiased, and most

importantly, this is common knowledge among the agents. This means they all accept that the

bias term is identical to zero in their initial belief and there is no uncertainty about it.8 We

refer to this simply as the conventional model. With Gaussian noises and a conjugate prior, the

conventional model has three main predictions that are most relevant to the current study.9 First,

after observing a su¢ ciently large sample of signals, any Bayesian learner will be able to infer

the true value of the hidden state.10 Second, it follows immediately that any initial disagreement

across agents will eventually disappear, hence there is no room for persistent disagreement.11

Third, in the short run, disagreement may remain but polarisation will never occur.12 More

speci�cally, two agents observing the same signal will never revise their estimates in opposite

directions and move further apart.

These results may fail to hold once we introduce an unknown bias term. At the individual

level, we show that agents�revised beliefs will converge to a non-degenerate distribution which is

dependent on the initial belief. Except for some knife-edge special cases, agents will not be able

to identify the true value of the hidden state. Instead, their long-run estimates are both biased

and inconsistent. This happens because uncertainty surrounding the systemic bias creates an

identi�cation problem in the learning process: in the limit, all agents (regardless of their initial

belief) can fully identify the sum of the hidden state and the bias term but not their separate

values.13 In addition, initial belief about the bias will in�uence how they respond to the signals

and revise their estimate for the hidden state. These e¤ects remain even in the limit.

Based on these �ndings, it is not surprising that any initial disagreement among the agents

will continue in the long run. Opinion polarisation, on the other hand, is less straightforward. In

8 In terms of a bivariate-normal initial belief, this means the marginal distribution of the bias term has zero
mean and zero variance

�
�2b;0

�
: On the contrary, the signals in our model may be truly unbiased but this is not

known with certainty so that �2b;0 > 0:
9Two reasons why we focus on Gaussian model. First, it is by far one of the most commonly used speci�cations

in economics and related �elds. Hence, the results mentioned below are most familiar among economists. Second, it
facilitates a direct comparison with our results. Further details about these predictions are provided in subsequent
footnotes.
10This means the agent�s limiting belief is degenerate at the true value of the hidden state. In other words, the

agent�s long-run estimate is both unbiased and consistent. This result remains valid if the hidden state has a �nite
number of possibel values (i.e., a discrete random variable) but the noises are drawn from a continuous distribution
[see DeGroot (1970, Section 10.5)]. In more general cases, the limiting distribution can be non-degenerate. See,
for instance, Chamley (2004, Section 2.4).
11Black and Dubins (1962) show that this result holds in a general environment under some mild conditions.
12See Bullock (2009. Proposition 3) for a formal statement of this result in the Gaussian model. This result

holds in general if the likelihood function (i.e., the density function of the signal conditional on the hidden state)
satis�es the monotone likelihood ratio property. Baliga et al. (2013, Theorem 1) establish this result for the case
when the hidden state is a discrete random variable.
13Andreoni and Mylovanov (2012) and Acemoglu et al. (2016) consider other settings in which identi�cation

problem can emerge in the Bayesian learning process. We will discuss these papers brie�y in the �Related Litera-
ture�part of the Introduction.
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order to make clear how polarisation can emerge, we �rst describe two other predictions of our

model that are not possible in the conventional one. We label these as de�ant learning and

misguided learning. The �rst one concerns how an agent responds to the observed signals along

the convergent path, while the latter concerns the long-run properties of the agent�s estimates.

De�ant learning happens when an agent revises her estimate for the hidden state in the opposite

direction as suggested by the signals. This cannot happen in the conventional model because the

signals therein are always positively correlated with the hidden state. Therefore, any high-than-

expected signal is an indication to the agent that her current estimate is too low, which motivates

an upward revision. As a result, agents in the conventional model will always revise their estimates

in the same direction as indicated by the signals.14 We refer to these as conventional learners.

On the contrary, an agent in our model may perceive the potentially biased signals as negatively

correlated with the hidden state. This happens when the agent presumes a signi�cant negative

correlation between the hidden state and the bias in her initial belief. To see how this can lead

to de�ant learning, consider the following example: Suppose an agent receives a news report on

the performance of a new vaccine which exceeds her prior expectation. However, due to a lack

of con�dence on the news channel, the agent suspects that the report may contain a bias that is

negatively correlated with the vaccine�s true performance. De�ant learning happens if the agent

infers from the positive news a higher-than-expected bias term. Since the latter tends to happen

when the vaccine�s true performance is poorer than expected, the agent will revise her expectation

downward. We refer to such agent as a de�ant learner.

Misguided learning, on the other hand, happens when an agent�s long-run estimate of the hid-

den state is further away from the true value than her initial estimate. In other words, the agent is

led further astray from the truth after being exposed to a long stream of potentially biased signals.

In general, misguided learning happens when an agent overestimates [resp., underestimates] the

hidden state initially and subsequent information leads her to revise her estimates upward [resp.

downward] more often than otherwise. Whether misguided learning will happen is ultimately

controlled by the parameters in the initial belief: the mean parameters determine whether the

agent is initially overestimating or underestimating the unknowns, while those in the covariance

matrix determine how the agent responds to the �surprises�(i.e., deviations from prior expecta-

14Formally, this means the agent�s revised estimate (posterior mean) is a monotonically increasing function in
the observed signals. It follows from this property that opinion divergence cannot occur. See Dixit and Weibull
(2007, p.7352) for an illustration. Here we emphasise on the sign of the correlation between the signals and the
hidden state.
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tion) in the signals.15 We show that misguided learning can happen under several combinations

of these parameters. This type of learning outcome cannot emerge in the conventional model

because any initial misjudgment will be corrected in subsequent revisions. This self-correcting

mechanism, however, is disrupted by the perceived bias in our model. De�ant learning is one

example of this, but it is neither necessary nor su¢ cient for misguided learning.16 Nonetheless,

it does present an interesting scenario which showcases the idea that the mere doubt surrounding

the systemic bias can lead a learner away from the truth. Suppose now the signals in our model

are, unbeknownst to the agents, truly unbiased. Suppose an agent has the correct initial estimate

of the bias term, but she is not entirely sure about it (i.e., the variance of the bias term in her

initial belief is strictly positive). Over time as more information arrives, the sample mean of the

signals (a su¢ cient statistic) will cluster around the true state. If an agent underestimates [resp.,

overestimates] the hidden state initially, then she will be receiving higher-than-expected [resp.,

lower-than-expected] news more frequently than otherwise. If, in addition, the agent is a de�ant

learner, then she will attribute this to a higher-than-expected [resp., lower-than-expected] bias

term and revise her estimate for the hidden state downward [resp., upward], thus moving further

away from the truth.17

Equipped with these �ndings at the individual level, it is now straightforward to compare

two agents who observe the same sequence of signals but have di¤erent initial beliefs. Our main

interest is on permanent opinion divergence, i.e., divergence in the agents�long-run estimates of

the hidden state.18 We divide the analysis into two parts. In the �rst one, the two agents have

di¤erent initial estimates but share the same covariance matrix in their initial beliefs. This means

they will respond in the same way to the �surprises�in the signals; in particular, they are either

both conventional learners or both de�ant learners. The mechanism behind permanent opinion

divergence is similar to that of misguided learning, but instead of moving further away from

the truth, the two agents are now moving further away from the other�s initial estimate. This

happens when the arrival of new information leads the agent with the relatively higher [resp.,

15For instance, whether de�ant learning will happen depends on the correlation parameter in the covariance
matrix of the initial belief.
16 In other words, misguided learning can also happen among the conventional learners in our model.
17Our model also predicts a third type of learning behaviour which is not possible in the conventional model.

We label this as opinion reversal. At the individual level, this happens when an agent overcorrects her initial
estimate after observing the signals. For example, an agent who overestimates the hidden state initially ends up
underestimating it in the long run. At the interpersonal level, this happens when the agent with a lower initial
estimate eventually �catches up� and overtakes the other agent�s estimate. We focus on de�ant learning and
misguided learning here because they are most directly relevant to our polarisation results. Further details about
opinion reversal can be found in Sections 2.4 and 3.
18Since the public signals are randomly �uctuating over time, opinion divergence may appear in one period and

disappear in another along the convergent path.
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lower] initial estimate to revise upward [resp., downward] and thus widening the gap between

the two. In the second part, we compare two agents that share the same initial estimates but

have di¤erent covariance matrices. In this case, permanent opinion divergence happens if and

only if one agent is a conventional learner and the other is a de�ant learner. The intuition is

straightforward: since the two start with the same initial estimates, the only way they can end

up having polarised opinions is by responding to the same signals in opposite directions.

From the above analysis, we have learned how the severity and occurrence of permanent

opinion divergence depend on the initial beliefs of those in comparison. A natural follow-up

question is how these e¤ects will play out in a population of agents with diverse initial beliefs.

In particular, whether exposure to a long stream of potentially biased signals will increase the

extent of disagreement at the aggregate level. To address this question, we consider a hypothetical

population in which all agents�initial beliefs belong to the class of bivariate-normal distributions

but with di¤erent parameters. We do not impose a speci�c cross-sectional distribution of these

parameters. Instead, we use the cross-sectional variance of estimates as summary measures of

disagreement within the population. Three such measures are of particular importance. These

are the cross-sectional variance of the initial estimate of the hidden state and the bias term,

denoted by var (s0) and var (b0) ; respectively; and the counterpart for the long-run estimate of

the hidden state, denoted by var (bs1) :19 Aggregate disagreement is said to increase after exposure
if var (bs1) is greater than var (s0) : Three main lessons emerge from this analysis. The �rst two

are obtained under the assumption that all agents share the same covariance matrix in their initial

beliefs, while the third one is under the assumption that they share the same initial estimates.

The �rst result states that, holding other things constant, greater initial disagreement in the bias

term will raise the value of var (bs1) : This is true even when there is no initial disagreement
in the hidden state across the agents, i.e., when var (s0) is zero. This shows that pre-existing

disagreement about the bias term can by itself generate long-term disagreement about the hidden

state. Second, provided that initial disagreement about the hidden state exists [i.e., var (s0) is

not zero], the mere doubt surrounding the bias term can sustain or even widen disagreement

in the long run. This result holds even if there is no initial disagreement on the systemic bias

[i.e., when var (b0) is zero] and regardless of the true value of the bias term.20 In addition, for

19The �rst two are taken as fundamentals of the model, while var (bs1) is an endogenous variable.
20A corollary of this result is as follows: Suppose, unbeknownst to the agents, the signals are truly biased, i.e.,

the true value of the bias term (b) is zero. Suppose all agents share the same correct initial estimate of b; so that
var (b0) = 0; but they are not entirely sure about this, which means the variance of b in their initial belief

�
�2b;0

�
is

strictly positive. Then, initial disagreement in the hidden state will persist in the long run [i.e., var (s0) > 0 implies
var (bs1) > 0]. On the other hand, if b = var (b0) = �2b;0 = 0 as in the conventional model, then var (bs1) = 0
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a population of conventional learners, disagreement decreases after exposure, i.e., var (bs1) is
non-zero but strictly less than var (s0) : But for a population of de�ant learners, disagreement

increases after they are exposed to a long stream of potentially biased signals. Finally, even if

there is no pre-existing disagreement about the unknowns [i.e., both var (s0) and var (b0) are

zero], long-term disagreement can exist due to cross-sectional di¤erences in the covariance matrix

in the initial belief. This happens because these di¤erences will generate di¤erential responses

(e.g., conventional vs de�ant learning) to the same signals among the agents.

Related Literature Several other studies have explored the possibility of permanent disagree-

ment and opinion polarisation within the Bayesian paradigm. Dixit and Weibull (2007) point

out that opinion polarisation is not possible in the conventional model if the likelihood func-

tion (i.e., the density function of the signal conditional on the hidden state) exhibits monotone

likelihood ratio (MLR) property. This observation motivates them to devise models where the

MLR property does not hold. Short-run polarisation in the mean estimates can emerge under

this approach; however, the authors caution that permanent polarisation is still not possible.21

Baliga et al. (2013) take a di¤erent approach and assume that agents display ambiguity-averse

preferences. This type of preferences gives rise to a hedging motive when the agents are forming

their posterior estimates. These authors show that opinion divergence can emerge between two

Bayesian learners with su¢ ciently extreme and polarised prior beliefs. The current study is close

in spirit to Andreoni and Mylovanov (2012) and Acemoglu et al. (2016) but di¤ers substantially

in details and �ndings. A common theme that threads through these studies is that disagreement

arises because agents have di¤erent interpretations about the public signals. In the theoretical

model of Andreoni and Mylovanov (2012), these di¤erences arise because di¤erent agents receive

di¤erent private signals which they use to interpret the public signals.22 Acemoglu et al. (2016)

show that long-run disagreement can readily emerge when agents are uncertain about the signal-

generating process, or more precisely the probability distribution of the signal conditional on the

hidden state. They consider a general setup without specifying the reason for this uncertainty

and they have not explored the possibility of opinion polarisation. Our study complements and

regardless of var (s0) :
21See Dixit and Weibull (2007, p.7353). See also the remarks made by Baliga et al. (2013, p.3081-3082).
22Kondor (2012) presents a �nancial trading model in which agents receive both public and private information

about a fundamental (an unknown parameter). In this setup, agents have incentives to learn the private information
of their trading partners. Public information can lead to greater disagreement (and more trading) in Kondor�s model
by increasing disagreement in higher-order expectations (i.e., expectations about other agents�expectations). This
mechanism is not present in our model and the other studies reviewed here.
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extends this work in three substantial ways. First, in a broad sense, uncertainty about the bias in

our model can be seen as one reason why agents are unsure about the conditional distribution of

the signals.23 This provides a speci�c context under which disagreement will occur and links the

theory to the empirical evidence on biased information. Second, we demonstrate the possibility of

both permanent disagreement and opinion polarisation in an easily tractable manner. Third, we

present novel results, such as de�ant learning and misguided learning, which can be of interests

in other applications.

Some other recent studies share similar features as the current one, but their main interests

are not about interpersonal disagreement and opinion polarisation. Heidhues et al. (2018) present

a learning model in which misguided learning can happen if the learner is �overcon�dent�, which

means she has erroneous or mis-speci�ed belief about the signal-generating process. In their

model, the signals not only include a confounding factor (the agent�s ability) but also an endoge-

nous choice variable (action). Liang and Xu (2020) considers a model in which agents receive

multiple sources of biased signals. But instead of exploring disagreement and opinion polarisa-

tion, they focus on e¢ cient information aggregation among the agents. Bayesian learning models

with biased signals have also appeared in the political science literature. Little and Pepinsky

(2021) use this type of models to discuss issues related to empirical estimations. Aytimur and

Suen (2024) and Little et al. (2025) examine electoral competition between two political parties

in this kind of learning environment.

2 Learning from Biased Signals

2.1 The Setup

Consider an agent who cares about an unobserved state s 2 R: In each time period t 2 f1; 2; :::g ;

the agent receives a noisy and potentially biased signal mt de�ned as

mt = s+ b+ "t;

where b 2 R is an unknown parameter that captures the inherent bias of the information channel,

and f"tg1t=1 is a sequence of independent and identically distributed noises. Each "t is drawn from

a normal distribution with mean zero and variance �2": The statistical properties of f"tg
1
t=1 are

23There is a subtle di¤erence between the two models. In ours, agents update their beliefs about the hidden state
and the bias term simultaneously. Hence, their uncertainty about the signal distribution is evolving over time.
This mechanism is absent in Acemoglu et al. (2016).
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known to the agent at the outset. While the agent�s primary concern is on the unobserved state

s, the possibility and magnitude of the bias term cannot be ignored. Consequently, the agent

forms an initial subjective belief on both s and b; and revise the joint distribution using Bayes�

rule upon the arrival of new information. We maintain the standard assumption that the noise

process is statistically independent from the agent�s initial belief. The latter takes the form of a

bivariate normal distribution with mean vector x0 and covariance matrix �0 speci�ed as

x0 =

264 s0
b0

375 and �0 =

264 �2s;0 !0

!0 �2b;0

375 :
The notations �2s;0; �

2
b;0 and !0 denote, respectively, the variance of s, the variance of b and the

covariance between the two in the initial belief. As mentioned in the Introduction, the parameter

�2b;0 represents the agent�s uncertainty about the unknown bias. In particular, a higher value

of �2b;0 indicates that the agent is more unsure about the bias term. The variance of s (i.e.,

�2s;0) can be interpreted in a similar fashion. We also de�ne �0 as the corresponding correlation

coe¢ cient, so that !0 = �0�s;0�b;0. Throughout the paper, we maintain the assumptions that

�s;0 > 0; �b;0 > 0 and �0 2 (�1; 1) : These guarantee that �0 is invertible and positive de�nite.24

A positive value of �0 means that, in the agent�s initial belief, the bias term tends to exaggerate

or complement the e¤ect of the unknown state, whereas a negative value means that b tends to

contradict the e¤ect of s. We emphasise at the outset that a nonzero value of �0 is not essential

in generating opinion polarisation between agents. A negative value of �0; nonetheless, opens up

a myriad of intriguing possibilities which we will discuss fully in later sections.

Using the elements of �0; we can de�ne two other moments that are crucial for subsequent

analysis. First note that conditional on (s; b) ; the signals are independent and identically dis-

tributed over time. The covariances between (s; b) and any individual signal mt are therefore

constant over time and are given by

�0 � Cov (s;mt) = �
2
s;0 + !0 and �0 � Cov (b;mt) = �

2
b;0 + !0;

24Under these assumptions, the determinant of �0 is strictly positive, hence the matrix is invertible. A strictly
positive determinant, together with a strictly positive trace

�
�2s;0 + �

2
b;0 > 0

�
; implies that the eigenvalues of �0

are strictly positive. Since �0 is symmetric, this implies positive de�niteness.

10



for all t: When taken separately, �0 and �0 can be either positive or negative. Speci�cally,

�0 ? 0 if and only if �0 ? �
�s;0
�b;0

;

and

�0 ? 0 if and only if �0 ? �
�b;0
�s;0

:

These conditions make clear that a negative value of �0 is a necessary condition for either �0 < 0

or �0 < 0. The sum of these two covariances, however, must be non-negative because �0 + �0 =

var (s+ b) in the agent�s initial belief. This rules out the case when �0 and �0 are both negative.

Using these notations, we can express the (unconditional) variance of each individual signal as

var (mt) = �0 + �0 + �
2
":

Table 1 summarises the key notation introduced so far. We take these as the fundamentals of our

model.

Table 1 Parameters in Initial Belief

Symbol Meaning Symbol Meaning

s0 Estimate of s !0 Covariance between s and b

b0 Estimate of b �0 Correlation between s and b

�2s;0 Variance of s �0 Covariance between s and mt

�2b;0 Variance of b �0 Covariance between b and mt

2.2 Closed-Form Solution for Updated Belief

After observing the signal in each period, the agent updates her belief about (s; b) using Bayes�

rule. Let x = [s b]0 denote the true value of the unobservables and mt = fm1; :::;mtg be a

history of signals up to time t: Conditional on mt; the agent�s revised belief will take the form of

a bivariate normal distribution with mean vector bxt; which contains the agent�s updated estimate
of x; i.e.,

bxt =
264 bstbbt

375 � E �x jmt� ;
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and covariance matrix

b�t =
264 b�2s;t b!tb!t b�2b;t

375 � E �(x� bxt) (x� bxt)0 jmt� :
The model admits a closed-form solution for the elements in bxt and b�t which is presented below.
Proposition 1 Starting from the initial conditions bx0 = x0 and b�0 = �0; the elements of bxt
and b�t at any time t � 0 are determined by

b�2s;t =
h
�2" +

�
1� �20

�
�2b;0t

i
�2s;0

�2" + (�0 + �0) t
; (1)

b�2b;t =
�
�2" +

�
1� �20

�
�2s;0t

�
�2b;0

�2" + (�0 + �0) t
; (2)

b!t = !0�
2
" �

�
1� �20

�
�2s;0�

2
b;0t

�2" + (�0 + �0) t
; (3)

bst = s0 + �t (mt � s0 � b0) ; (4)

bbt = b0 + �t (mt � s0 � b0) ; (5)

where mt �
Pt
i=1mi=t is the average value of the realised signals up to time t;

�t �
�0t

�2" + (�0 + �0) t
and �t �

�0t

�2" + (�0 + �0) t
:

Unless otherwise stated, all proofs can be found in the Appendix. Here we focus on the

interpretation and intuition of the solution. Equations (1)-(3) form a stand-alone system that

completely characterises the dynamics of b�t: In particular, these equations are independent of the
initial estimates x0 = (s0; b0) ; the history of realised signals mt and the corresponding sequence

of revised estimates
nbs1;bb1; :::; bst;bbto : This allows us to analyse the dynamics of b�t separately.

Equations (4)-(5) describe how the agent updates the estimates of (s; b) based on the observed

signals. In each period, the agent adjusts these estimates based on the �unexpected�component

of the signals, i.e., the discrepancy between the sample mean mt and her initial combined esti-

mate s0 + b0: The direction of the adjustment, however, is governed by the sign of �t and �t.
25

25The linearity of (4) and (5) greatly simpli�es our main analysis. In particular, these equations state that

the updated estimates
�bst;bbt� can be written as a linearly combination of the initial estimates (s0; b0) and the

average value of the realised signals mt: Diaconis and Ylvisaker (1979, Theorem 2) show that this property remains
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In order to highlight the novelties brought by the unknown bias term, we compare the current

model to one with known unbiased signals (the conventional model). In this environment, the

true value of the bias term is identical to zero (i.e., b = 0) and, more importantly, it is a publicly

known fact accepted by the agent so that b0 = 0 and �b;0 = 0: Setting b = b0 = �b;0 = 0 in the

above equations yields bbt = b�2b;t = b!t = 0 for all t: Equations (1) and (4) then simplify to become
b�2s;t = �2"�

2
s;0

�2" + �
2
s;0t
; (6)

bst = s0 + �2s;0t

�2" + �
2
s;0t

(mt � s0) : (7)

Equation (6) makes clear that, when the signals are known to be unbiased, the error variance

of the agent�s estimate will converge to zero as t (the number of observed signals) approaches

in�nity. This means after observing a su¢ ciently long stream of unbiased signals, the agent can

�lter out the noises and identify the true value of s: This well-known result from the conventional

model is no longer valid once we introduce an unknown bias term. This can be seen by studying

the asymptotic properties of
�b�2s;t	1t=0 and �b�2b;t	1t=0 : Our next result states that both sequences

are monotonically decreasing and convergent. This means the precision of the agent�s estimates

are improving after each update. Thus, learning occurs even though the signals are confounded

by another unknown parameter. But instead of converging to zero, both b�2s;t and b�2b;t converge to
a strictly positive value which is determined by the elements in �0: This means the agent remains

uncertain about the true value of s and b even after observing an in�nite stream of signals.

Proposition 2 In the presence of an unknown bias term, both
�b�2s;t	1t=0 and �b�2b;t	1t=0 are

monotonically decreasing sequences that converge to the same limit, which is strictly positive.

Formally,

lim
t!1

b�2s;t = lim
t!1

b�2b;t =
�
1� �20

�
�2s;0�

2
b;0

�2s;0 + �
2
b;0 + 2!0

> 0: (8)

Even though the agent cannot identify the true value of s and b separately, she can still learn

the true value of their sum, s+ b; in the long run. This follows from Proposition 3 which states

valid if the signals are independently drawn from a distribution in the exponential family (which includes normal,
exponential, gamma, binomial and Poisson among others) and a conjugate prior is used as the initial belief (see
their remark on p.274).
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that the combined estimate bst + bbt will converge in probability to the true value s + b as the
number of observations increases. Intuitively, this means that when t is su¢ ciently large, the

chance that bst +bbt is somewhat di¤erent from s+ b can be made arbitrarily small.

Proposition 3 In the presence of an unknown bias term, the combined estimate bst+bbt converges
in probability to the true sum, i.e., for any " > 0;

lim
t!1

Pr
h���bst +bbt � s� b��� � "i = 0:

One implication of Proposition 3 is that in the long run, the covariance between s and b in

the agent�s updated belief (i.e., b!t) must be strictly negative. This is because, after observing
a su¢ ciently large number of signals, the agent will have a good grasp of the true combined

value s + b. Any new information that induces her to adjust bst upward will necessarily lead to
a downward adjustment in bbt: Hence, the two must be perfectly negatively correlated in the long
run. This can be shown formally using the results in Proposition 4, which concerns the dynamic

properties of b!t: Starting from any initial value b!0 that is consistent with �s;0 > 0; �b;0 > 0 and
�0 2 (�1; 1) ; the sequence fb!tg1t=0 generated by (3) is monotonic and convergent. The limit valueb!1 is strictly negative as shown in (9). It follows that the sequence is monotonically decreasing

[resp., monotonically increasing] towards b!1 if the initial value b!0 is greater [resp., lower] thanb!1: Equations (8) and (9) together imply
lim
t!1

b�t = lim
t!1

� b!tb�s;tb�b;t
�
= �1:

Proposition 4 In the presence of an unknown bias term, the sequence fb!tg1t=0 is convergent
with limit

b!1 � lim
t!1

b!t = � �1� �20��2s;0�2b;0
�2s;0 + �

2
b;0 + 2!0

< 0: (9)

In addition, b!t+1 ? b!t for all t � 0 if and only if !0 7 b!1:
Another interesting observation about the correlation between s and b is that even if they are

presumed to be uncorrelated in the initial belief (i.e., �0 = 0), the mere uncertainty about the

bias term (i.e., �b;0 > 0) is enough to generate a nonzero correlation in all subsequent periods

14



(i.e., b�t 6= 0 for all t). To see this formally, we use Equations (1)-(3) to derive
b�t = �0�

2
" �

�
1� �20

�
�s;0�b;0trh

�2" +
�
1� �20

�
�2b;0t

i h
�2" +

�
1� �20

�
�2s;0t

i :

When evaluated at �0 = 0; this simpli�es to become

b�t = ��s;0�b;0trh
�2" + �

2
b;0t
i h
�2" + �

2
s;0t
i ;

which is strictly negative for all t:26 Note that this result holds regardless of the true value of b

and the initial estimate b0: In other words, uncertainty begets correlation even if the signals are

truly unbiased and the agent�s initial estimate is correct on this, i.e., b = b0 = 0:

The rest of this section concerns the dynamic and asymptotic properties of bst and bbt: Unlike
Equations (1)-(3), the dynamic system for bst and bbt are contingent on the history of realised
signals through the su¢ cient statistic mt: Note that the expected value of mt under the agent�s

initial belief is s0+b0: Hence one way to interpret (4) and (5) is that, over time as new information

becomes available, the revised estimates bst and bbt will �uctuate around the initial estimates s0
and b0; respectively. Note also that the sign of �t and �t are solely determined by the sign of �0

and �0; respectively.

Suppose the agent observes a higher-than-expected sample mean at time t so thatmt > s0+b0:

If the agent perceives the signals as positively correlated with the hidden state, i.e., �0 > 0; then

she will interpret the higher-than-expected sample average as an indication that the true state s

is greater than her initial estimate s0: This will motivate the agent to revise her estimate upward,

i.e., bst > s0:27 We refer to such agent as a conventional learner. Contrarily, if the agent presumes
a negative correlation between the hidden state and the signals, i.e., �0 < 0, then �0 must be

strictly positive [recall that �0 and �0 cannot both be negative]. In this case, the agent will

attribute the higher-than-expected sample mean to a higher-than-expected value of b instead.

Since a negative correlation between s and b (i.e., �0 < 0) is a necessary condition for �0 < 0; a

high value of b suggests that the true value of s is likely to be low. This will motivate the agent

26This result continues to hold if �0 2 (�1; 0) : If �0 2 (0; 1) ; then there exists a unique value t� � 0 such thatb�t ? 0 for t 7 t�:
27Note that the comparison here is between bst and s0; not between bst and bst�1: It is possible to rewrite (4) and

(5) as a sequential update from
�bst�1;bbt�1� to �bst;bbt� : Equations (4) and (5), however, provide an easier route

to derive the asymptotic results in Proposition 5.
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to revise her estimate for s downward; i.e., bst < s0: We refer to this kind of agent as a de�ant

learner. If �0 = 0; then in the agent�s initial belief the signals are uncorrelated with (and hence

uninformative about) the hidden state. It follows that �t = 0 at all times and the agent will never

adjust her initial estimate so that bst = s0 for all t: We will ignore this uninteresting case in the
following analysis.

The above description presents another major di¤erence between the current model and the

conventional model. As Equation (7) makes clear, an agent learning from unbiased signals will

always adjust her estimate in the same direction as the unexpected component in the signals, so

that

bst ? s0 if and only if mt ? s0:

In other words, there are only conventional learners in the conventional model. But in the current

model, the adjustment can go in either direction depending on the sign of �0; so that

(bst � s0) (mt � s0) ? 0 if and only if �0 ? 0:

So there are both conventional and de�ant learners in our model.

We can also evaluate the average behaviour of bst and bbt from an outside observer�s perspective.
Consider an observer who knows the true value of (s; b), the statistical properties of the noise

process and the agent�s initial belief N (x0;�0) [hence the observer knows how the agent updates

her belief]. To this observer, the expected value of mt is s + b and the average behaviour of bst
and bbt are characterised by

E (bst) = s0 + �t (s+ b� s0 � b0) ; (10)

E
�bbt� = b0 + �t (s+ b� s0 � b0) : (11)

The dynamics of E (bst) and E �bbt� are entirely driven by the time-varying coe¢ cients �t and �t;
respectively. In particular,

d�t
dt

=
�0�

2
"

�2" + (�0 + �0) t
? 0 if and only if �0 ? 0;

and
d�t
dt

=
�0�

2
"

�2" + (�0 + �0) t
? 0 if and only if �0 ? 0:
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This means if �0 > 0 [resp., �0 > 0], then �t [resp., �t] is strictly positive and increasing in value

over time. Suppose the agent underestimates the true combined value initially, i.e., s+b > s0+b0;

and both �0 and �0 are strictly positive. Then from the observer�s point of view, the average

value of both bst and bbt will be increasing over time. But if either �0 < 0 or �0 < 0; then E (bst)
and E

�bbt� will move in opposite directions.
As more and more signals are realised, the variance of the noises will become less and less

important in the learning process. Hence, the limit of �t and �t are given by

�1 � lim
t!1

�t =
�0

�0 + �0
and �1 � lim

t!1
�t =

�0
�0 + �0

= 1� �1:

Using these and the law of large numbers [which implies mt
p! (s+ b)]; we can derive the asymp-

totic value of bst and bbt from (4) and (5). The results are shown in Proposition 5.

Proposition 5 In the presence of an unknown bias term, bst and bbt converge in probability tobs1 and bb1, respectively, as t!1: The limits are given by

bs1 � s0 + �1 (s+ b� s0 � b0) ; (12)

bb1 � b0 + (1� �1) (s+ b� s0 � b0) : (13)

The coe¢ cient �1 can be interpreted as follows: Since the agent�s initial belief is independent

of "t; we can write

�0 � Cov (s;mt) = Cov (s; s+ b) :

Thus, �1 indicates the contribution of Cov (s; s+ b) to the uncertainty about s+ b in the agent�s

initial belief, which is var (s+ b) = �0 + �0: Note that �1 is negative if �0 < 0; and greater than

one if �0 < 0: It is bounded within [0; 1] if and only if both �0 and �0 are non-negative.

Equations (12) and (13) encompass two types of learning behaviour that are incompatible

with the conventional model. In the �rst, learning from an in�nite sequence of signals does not

bring the agent any closer to the truth. Instead, the agent�s long-run estimate of the hidden

state is further away from the true value than her initial estimate, i.e., either bs1 > s0 > s or

bs1 < s0 < s: We refer to this as misguided learning, which is analysed in Section 2.3. In the

second scenario, the relative position between the agent�s estimate and the true value is reversed

after learning, i.e., either bs1 > s > s0 or bs1 < s < s0: We refer to this as opinion reversal.
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Note that the agent can be either further away or closer to the truth after learning, i.e., both

jbs1 � sj < js� s0j and jbs1 � sj > js� s0j are possible. We do not further distinguish between

these two subcases. Opinion reversal is the subject of Section 2.4. For reasons explained earlier,

we do not consider the case when �0 = 0 in the following analysis.

2.3 Misguided Learning

Using (12), it is straightforward to show that bs1 > s0 > s happens if and only if

�1 (s+ b� s0 � b0) > 0 and s0 > s: (14)

Similarly, bs1 < s0 < s is true if and only if

�1 (s+ b� s0 � b0) < 0 and s0 < s: (15)

It su¢ ce to focus on the intuition behind (14) because (15) can be explained symmetrically.

Suppose �0 > 0 so that �1 > 0: This means the agent is a conventional learner. Then the

conditions in (14) imply s+ b > s0 + b0 and hence b� b0 > s0 � s > 0: This means even though

the agent overestimates the value of s in the initial estimate, this is counteracted by a substantial

underestimation in the bias term so that the initial combined estimate falls below the true value.

Over time as new signals arrive, the sample mean mt will get closer and closer to s+ b by the law

of large numbers. This means the agent will almost always observe mt > s0 + b0 in the long run.

This will induce any conventional learner to maintain a long-run estimate for s that is higher

than her initial assessment so that bs1 > s0:
28

The above description makes clear that a signi�cant misalignment between b and b0 is nec-

essary for misguided learning to occur among conventional learners. Interestingly, this is not

necessary for a de�ant learner [i.e., when �0 < 0]: Suppose, unbeknownst to the agent, the signals

are truly unbiased. Suppose the agent�s initial estimate b0 is correct (i.e., b0 = b = 0), but doubt

lingers so that �b;0 > 0: Then s0 > s alone implies s0 + b0 > s + b which means in the long run

the agent will almost always observe mt < s0 + b0: Since �0 = Cov (s;mt) < 0; the agent will

take this as an indication that the true value of s is higher than her initial estimate and revise

28 It is important to note that s0 > s is just an initial condition, it has no bearing on how the agents will respond
to the new information [which is controleld by �1 (s+ b� s0 � b0)]. It follows that if �1 (s+ b� s0 � b0) > 0;
then bs1 > s� for any s� that satis�es s0 � s�: We exploit this argument when considering opinion divergence at
the interpersonal level.
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her estimate upward. This will again sustain a long-run estimate which is further away from the

truth, i.e., bs1 > s0 > s:

We now provide some simulated examples that can help visualise the above points. For

the hidden parameters, we set (s; b) = (0:2; 0) so that the signals are unbiased. In order to

be consistent with the second inequality in (14), we set s0 = 0:3 > s: In the initial covariance

matrix, we set �2s;0 = 0:1 and �
2
b;0 = 0:5: The two key parameters are b0 and �0: For the correlation

coe¢ cient, we consider two possible values: �0 = 0 and �0 = �0:65: Under the stated value of

�2s;0 and �
2
b;0; these correspond to �0 = 0:1 and �0 = �0:0342; respectively. In each case, we

consider four possible values of b0; namely f�0:3; 0; 0:3; 0:6g : Figure 1 depicts the time paths

of bst obtained under �0 = 0; while Figure 2 depicts those obtained under �0 = �0:65: All the

time paths in Figures 1 and 2 are based on the same sequence of 100 independent error terms

f"1; :::; "100g drawn from the same distribution N
�
0; �2"

�
; with �2" = 0:03: Table 2 summarises

the parameter values and the resulting values of f�0; �0; �1g in the simulated examples.29

Table 2 Parameter Values in Simulated Examples

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

s 0:2 0:2 0:3 0:3 0:3

b 0 0 0 0 0

s0 0:3 0:3 0:2 0:2 0:2

b0 [�0:3; 0; 0:3; 0:6] �0:6 0 1:4

�0 0 �0:65 0 �0:65 �0:65

�2s;0 0:1 0:1 0:1 0:5 0:1

�2s;0 0:5 0:5 0:5 0:1 0:5

�2" 0:03 0:03 0:03 0:03 0:03

�0 0:10 �0:045 0:10 �0:045 0:355

�0 0:50 0:355 0:50 0:355 �0:045

�1 0:167 �0:147 0:167 �0:147 1:147

29The simulated results are robust to a wide range of parameter values, hence it is easy to construct other examples
that can deliver the same messages. The MATLAB codes for generating the numerical results are available from
the author�s personal website.
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Figure 1

Figure 2
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In Figure 1, misguided learning happens in the uppermost sequence which corresponds to the

case when b0 = �0:3; so that s0 + b0 = 0 < s+ b: The limit value bs1 is one-third which con�rms

the ordering bs1 > s0 > s: For the second and third sequence (which corresponds to b0 = 0 and

b0 = 0:3; respectively), the �rst inequality in (14) is violated. As a result, the limit value bs1 is

sandwiched between s0 and s: Learning is incomplete in the sense that bs1 6= s but it is closer

to the truth than the initial estimate. The fourth sequence in Figure 1 is an example of opinion

reversal which we will discuss in the next section.

The only di¤erence between the results in Figure 1 and those in Figure 2 lies in the value of

�0: Figure 2 shows that when �0 switches from zero to �0:65; the movement of bst and the ordering
of the sequences are completely reversed. In particular, the third sequence (which corresponds to

b0 = 0) con�rms that the mere suspicion of a hidden bias in the signals (i.e., �b;0 > 0) is enough

to generate misguided learning when �0 < 0:

2.4 Opinion Reversal

Using (12), it can be readily shown that bs1 > s > s0 happens if and only if30

�1 (s+ b� s0 � b0) > s� s0 > 0: (16)

If both �0 and �0 are strictly positive so that �1 2 (0; 1) ; then (16) is equivalent to

b� b0 >
1� �1
�1

(s� s0) > 0: (17)

This has two meanings: First, the agent underestimates both s and b in her initial belief so that,

in the long run, the sample mean of realised signals is almost always greater than (s0 + b0) : Since

�t and �t are both positive for all t, the agent�s revised estimates bst and bbt will eventually converge
to some values that are above the initial estimates so that bs1 > s0 and bb1 > b0: This mechanism

alone, however, does not guarantee that bs1 is higher than the true value. The inequalities in

(17) also mean that the agent has signi�cantly and su¢ ciently underestimated the bias term in

her initial estimate. This ensures that the long-run estimate bb1 is higher than b0 but still falls

short of the true value b: Since bs1 +bb1 = s+ b; it follows that bs1 > s: A simulated example of

this is shown Figure 3 based on the parameter values listed in Table 2.31 Another example is the

30Likewise, bs1 < s < s0 is true if and only if �1 (s+ b� s0 � b0) < s� s0 < 0:
31We do not include the initial values (s0; b0) in Figures 3 and 5 because b0 in each case is substantially di¤erent

from the other values. Including this one point will dwarve the rest of the diagram, making it less comprehensible.

21



Figure 3

Figure 4
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Figure 5

lowermost sequence depicted in Figure 1 (the one with b0 = 0:6). In this case, opinion reversal

occurs in the form of bs1 < s < s0:

If �0 > 0 and �0 � 0 so that �1 � 1; then opinion reversal can happen even if b0 = b: In this

case, the agent will revise bst and bbt in opposite directions in each period. In the long run, bs1
will stay above s0 while bb1 falls below b0; so that bb1 < b0 = b: This again ensures bs1 > s: A

simulated example is shown in Figure 4. Finally, if �0 < 0 so that �1 < 0 and �1 = 1��1 > 1;

then (16) implies

s+ b < s0 + b0 and b� b0 <
1� �1
�1

(s� s0) < 0:

The �rst inequality means that the agent will almost always observe mt < s0+ b0 in the long run.

Since �0 < 0 and �0 > 0; the agent will raise the value of bs1 above s0 but lower bb1 below b0:

The fact that �1 > 1 means that the downward adjustment in bb1 is substantial, so that bb1 < b.

This in turn ensures bs1 > s: Figure 5 provides a simulated example for this case.
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3 Interpersonal Disagreement

We now compare the learning behaviour of two individuals, referred to as Agent 1 and 2, in the

above model. Both agents share the same knowledge about the information channel and observe

the same sequence of public signals fm1;m2; :::g : The two agents, however, have di¤erent initial

beliefs about (s; b) which are given byN
�
xy0;�

y
0

�
andN

�
xz0;�

z
0

�
; respectively. Upon the arrival

of new information, both agents update their beliefs according to (1)-(5). We do not consider

any private information in order to single out the e¤ects of the bias in the public signals.

We will refer to bsyt and bszt as the agents�opinion about the hidden state s after observing the
same history of signals mt: Disagreement is said to occur at time t if bsyt 6= bszt : Given the initial
di¤erences in belief, disagreement is bound to happen except in the knife-edge case when

sy0 + �
y
t

�
mt � sy0 � b

y
0

�
= sz0 + �

z
t

�
mt � sz0 � b

z
0

�
;

for some t; or in the long run

sy0 + �
y
1

�
s+ b� sy0 � b

y
0

�
= sz0 + �

z
1

�
s+ b� sz0 � b

z
0

�
:

We will not indulge in these special cases. Our main interest is whether the initial disagreement

will widen or reverse after the two agents observe an in�nite stream of public signals.

Without loss of generality, assume sy0 � s
z
0: Opinion divergence or polarisation refers to a

situation in which the two agents update their estimates in opposite directions and as a result

disagreement widens over time, i.e.,

bsyt > sy0 � sz0 > bszt : (18)

Permanent opinion divergence is said to happen when the above inequality holds in the long

run, i.e.,

bsy1 > sy0 � s
z
0 > bsz1: (19)

The main di¤erence between (18) and (19) is that in the former, both bsyt and bszt are random
variables driven by the signals. Hence, the inequalities in (18) characterise a random event that

happens only with some probability. On the contrary, permanent divergence either happens or

not, depending on the parameter values.
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Opinion reversal refers to a situation in which the ordering between sy0 and s
z
0 is reversed

at some time t, so that

sy0 � s
z
0 � 0 > bsyt � bszt : (20)

Permanent reversal happens when the ordering between sy0 and s
z
0 is reversed in the long run,

so that

sy0 � s
z
0 � 0 > bsy1 � bsz1: (21)

We begin with the case in which the two agents share the same covariance matrix in their

initial beliefs so that�y0 = �
z
0 = �0: It follows that the two share the same sequence of coe¢ cients

f�tg1t=1 as de�ned in (4) and the same limit �1 as in (12). Proposition 6 provides the conditions

under which (18)-(21) will occur.

Proposition 6 Consider two agents with initial beliefs N
�
xy0;�0

�
and N

�
xz0;�0

�
; where

sy0 � s
z
0:

(i) Opinion divergence happens at time t, i.e., (18) holds, if and only if

�0

�
sz0 + b

z
0

�
> �0mt > �0

�
sy0 + b

y
0

�
:

(ii) Permanent opinion divergence happens, i.e., (19) holds, if and only if

�0

�
sz0 + b

z
0

�
> �0 (s+ b) > �0

�
sy0 + b

y
0

�
: (22)

(iii) Opinion reversal happens at time t, i.e., (20) holds, if and only if

�t

�
by0 � b

z
0

�
> (1� �t)

�
sy0 � s

z
0

�
. (23)

(iv) Permanent reversal happens, i.e., (21) holds, if and only if

�1
�
by0 � b

z
0

�
> (1� �1)

�
sy0 � s

z
0

�
.

The mechanism behind opinion divergence is similar to that for misguided learning in Section

2.3. Suppose �0 > 0 so that �t > 0 for all t; including the limit. In this case, both agents

are conventional learners. Then opinion divergence happens at time t if and only if sz0 + b
z
0 >

25



mt > sy0 + b
y
0: This means, even though Agent 1�s initial estimate of the hidden state is no less

than Agent 2�s, her initial estimate of the bias term must be su¢ ciently lower so that Agent 2�s

combined estimate sz0 + b
z
0 is strictly greater than that of Agent 1. It follows that whenever mt

falls between
�
sz0 + b

z
0

�
and

�
sy0 + b

y
0

�
; Agent 1 will adjust her estimate above sy0 and Agent 2 will

lower hers below sz0; hence widening the initial disagreement. Similarly to misguided learning,

the misalignment between by0 and b
z
0 is not needed when �0 < 0 [i.e., when both agents are de�ant

learners]. To see this, suppose sy0 > s
z
0; b

z
0 = b

y
0 and �0 < 0: Then whenever s

y
0 > mt > s

z
0 holds,

Agent 1 will take this as an indication that the true value of s is higher than her initial estimate.

As a result, Agent 1 will adjust her estimate above sy0 while Agent 2 will do the opposite, again

widening the initial disagreement. Part (ii) of Proposition 6 can be interpreted in the same

fashion by replacing mt with (s+ b) : In this case, the misguided learning mechanism works on

both agents but in opposite directions. In particular, it brings the agents further away from

the other agent�s initial estimate for s (see Footnote 28). As an example, we can interpret the

uppermost and the lowermost sequences in Figure 1 as two agents who share the same initial

estimate for s, i.e., sy0 = sz0 but di¤erent values of b0 under �0 > 0: In this case, Agent 1 with

by0 = �0:3 matches the criterion s + b = 0:2 > sy0 + b
y
0 = 0, while Agent 2 with a signi�cantly

higher value of b0 (i.e., b
y
0 = 0:6) satis�es s

z
0 + b

z
0 = 0:9 > s+ b: The resulting sequences con�rm

the prediction in part (ii) of Proposition 6.

We now turn to opinion reversal. The conditions for opinion reversal and opinion divergence

di¤er in two material ways. First, the former is independent of the realised signals. To see why

this is the case, we �rst rewrite (4) as

bst = s0 � �t (s0 + b0) + �tmt; (24)

where the last term captures the agent�s response to the signals. If two agents share the same

coe¢ cient �t; then the same signals will a¤ect their opinions in exactly the same way. As a

result, the di¤erence bsyt � bszt is independent of mt:
32 Note that all the terms in condition (23) are

nonrandom and the condition is linear in �t (which is the only variable that changes over time).

Thus, it is no surprise that opinion reversal can only happen once, if at all. This gives rise to the

second major di¤erence between opinion divergence and opinion reversal: once opinion reversal

32Oppinion divergence, on the other hand, concerns the directions in which the agents revise their estimates.
This is controlled by �t (mt � s0 � b0) along the convergent path. Hence, the condition in part (i) is dependent on
mt:
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happens at some time t <1 it is permanent. This result is formally stated in Proposition 7.

Proposition 7 Consider two agents with initial beliefs N
�
xy0;�0

�
and N

�
xz0;�0

�
; where

sy0 � s
z
0: If opinion reversal happens at some time t; i.e., bszt > bsyt ; then bszt+k > bsyt+k for all k > 0;

including bsz1 > bsy1:
To see the intuition behind these results, consider the following equation which is derived

from (24),

bsyt � bszt = sy0 � sz0 � �t �sy0 + by0 � sz0 � bz0� :
This breaks down the di¤erences in the agents�opinion into two parts. The �rst term is due to

initial disagreement. The second term captures the di¤erences incurred in the revision at time t.

Suppose �t > 0 and s
y
0+b

y
0 > s

z
0+b

z
0: The latter means that Agent 1 has higher expectation about

the signals than Agent 2. Over time, it is more likely that sy0 + b
y
0 > mt than s

z
0 + b

z
0 > mt: This,

together with �t > 0; means that Agent 1 is more likely to revise her estimate downward than

Agent 2. Note also that if �t > 0; then its magnitude will be increasing over time. This means

any downward revision that happens in a later date will be greater in magnitude than one that

happens earlier. This makes it possible for Agent 2 to catch up and eventually overtake Agent 1.

The case of �t < 0 can be explained similarly.

In the second part of the analysis, we assume that the two agents share the same initial

estimates but have di¤erent covariance matrices in their initial beliefs, i.e., xy0 = xz0 = x0 and

�y0 6= �
z
0:
33 Using (4), it is immediate to see that bsyt > bszt at any time t if and only if

�
�yt � �

z
t

�
(mt � s0 � b0) > 0 ,

�
�y0 � �

z
0

�
(mt � s0 � b0) > 0:

The implications are as follows: Suppose at some time t; the two agents observe a summary

statistic mt that is greater than their combined estimate, i.e., mt > s0 + b0: Then there are

three possible scenarios in which Agent 1�s revised estimate for s is higher than Agent 2�s. In

the �rst one, both �y0 and �
z
0 are positive but �

y
0 > �

z
0: In this case, both agents respond to the

higher-than-expected statistic by revising their estimates upward, i.e., bsyt > s0 and bszt > s0: But
Agent 1 is more responsive to the surprise which leads to a higher revised estimate. In the second

scenario, both �y0 and �
z
0 are negative but �

y
0 is closer to zero. In this case, both agents revise their

opinions about s downward but Agent 1 is less responsive to the surprise. In the �nal scenario,

33Since the two agents start with the same initial estimate s0; the possibility of opinion reversal is muted in this
scenario.
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�y0 is positive but �
z
0 is negative. As a result, Agent 1 will revise her estimate upward while Agent

2 will do the opposite, which results in opinion divergence. Permanent opinion divergence can be

similarly explained and characterised by replacing mt with (s+ b) : These results are summarised

below. The proof follows immediately from (4) and (12), hence it is omitted.

Proposition 8 Consider two agents with initial beliefs N
�
x0;�

y
0

�
and N

�
x0;�

z
0

�
; where

�y0 6= �
z
0:

(i) Opinion divergence happens at time t, i.e., bsyt > s0 > bszt , if and only if
�y0 (mt � s0 � b0) > 0 > �z0 (mt � s0 � b0) :

(ii) Permanent opinion divergence happens, i.e., bsy1 > s0 > bsz1, if and only if
�y0 (s+ b� s0 � b0) > 0 > �

z
0 (s+ b� s0 � b0) :

4 Aggregate Disagreement

We now extend the above analysis to a large population of agents who observe the same sequence

of public signals fmtg1t=1 but have heterogeneous initial beliefs about (s; b). Each agent updates

their estimates according to (1)-(5) and the asymptotic value of their estimates are determined

by (12). Our main focus in this section is whether continuous exposure to the potentially biased

signals will exacerbate disagreement at the aggregate level.

Let var (s0) and var (b0) denote, respectively, the variance of s0 and b0 in the cross-sectional

distribution of initial beliefs.34 These measure the dispersion of s0 and b0 across agents before they

are exposed to the signals. To simplify the analysis, we assume that s0 and b0 are uncorrelated

across agents, i.e., Cov (s0; b0) = 0: As in Section 3, we �rst consider the case in which agents

share the same covariance matrix �0 in their initial beliefs, so that f�0; �0; �1g are the same

across individuals. It then follows from (12) that the dispersion of bs1 within the population is

given by

var (bs1) = (1� �1)2 var (s0) + �21var (b0) : (25)

The above equation encompasses the conventional model as a special case. If the signals are

34The exact distribution of (s0; b0) within the population is irrelevant for our analysis.
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truly unbiased (i.e., b = 0) and this fact is universally accepted by all agents in the society, then

there is no pre-existing disagreement about the bias term so that var (b0) = 0; and there is no

uncertainty regarding b so that �2b;0 = 0 for all agents. The latter implies �1 = 1: In the long run,

all agents will learn the true value of the hidden state and aggregate disagreement disappears,

i.e., var (bs1) = 0: This result holds regardless of var (s0) because �1 = 1.

Suppose now within the society all agents share the same initial estimate s0; so that var (s0) =

0: But they have di¤erent views about the biasedness of the signals, so that var (b0) > 0: In this

case, (25) becomes

var (bs1) = �21var (b0) =
"

�2s;0 + �0�s;0�b;0

�2s;0 + �
2
b;0 + �0�s;0�b;0

#2
var (b0) :

The complicated expression on the right helps us identify the necessary ingredients in generating

aggregate disagreement in the long run. Provided that var (b0) > 0; var (bs1) > 0 if and only

if �0 6= 0: Recall that �0 = 0 [and hence �t = 0 for all t] means the agents never revise their

estimates for s: This happens when either �s;0 = 0 or �s;0+ �0�b;0 = 0: The main message of this

observation is that aggregate disagreement can be easily spawned when people disagree about

the biasedness of the public signals. In this type of environment, disagreement is the norm and

consensus is a special case.

Now consider a di¤erent society in which (i) agents disagree about the hidden state ex ante,

i.e., var (s0) > 0; (ii) they share the same b0 so that var (b0) = 0 [could be b = b0 = 0], but (iii)

they are not entirely sure about b0; i.e., �b;0 > 0: It follows from (25) that

var (bs1) = (1� �1)2 var (s0) :
Even though there is no initial disagreement in b0; the agents�uncertainty about the unknown

bias can still generate aggregate disagreement in bs1: This happens because �b;0 > 0 implies

�1 6= 1: Learning from the public signals can help reduce the initial disagreement within the

population, i.e., var (bs1) < var (s0) ; if and only if
(1� �1)2 < 1 , �1 =

�0
�0 + �0

2 (0; 2) :

A necessary condition for this is �0 > 0; which means all the agents are conventional learners.

If instead, �1 < 0 or �1 > 2; then the public signals will worsen the disagreement within the
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population, i.e., var (bs1) > var (s0) : Note that �1 < 0 means that all agents in the population

are de�ant learners.

In general,

var (bs1) ? var (s0) i¤ var (b0) ?
�
2� �1
�1

�
var (s0) :

The main takeaway is that if �1 < 0 and the agents hold diverse views about the bias term [so

that var (b0) is strictly positive but however small], then being exposed to the potentially biased

public signals will widen the initial disagreement within the population. This is true regardless

of the extent of initial disagreement var (s0) :

As an illustration of these points, we construct a hypothetical population of 200 agents whose

initial estimates (s0; b0) are equally spaced on the unit circle centred at the true parameter values

(s; b) = (0:2; 0) :35 This circular distribution is depicted in Figures 6 and 7. Using the same values

of
n
�2s;0; �

2
b;0; �

2
"; �0

o
as in Figures 1 and 2 (see Table 2), we compute the asymptotic values�bs1;bb1� for each (s0; b0) : The resulting values are located on a straight line L : bs1+bb1 = s+ b

that cuts through the circle. The auxiliary dashed lines link the initial value (s0; b0) to the

corresponding long-run value
�bs1;bb1� for a selected sample of agents. Figure 6 shows the

results obtained under �0 = 0: The �rst thing to note is that the range of bs1 is smaller than

that of s0; which suggests a reduction in disagreement. This is con�rmed by the reduction in

the variances from var (s0) = 0:505 to var (bs1) = 0:365: Both misguided learning and opinion

reversal are at play. The former happens for any agent whose initial estimates either (i) lie below

the straight line L and satisfy s0 > s (e.g., point A) or (ii) lie above L and satisfy s0 > s (e.g.,

point B). In particular, the long-run estimate associated with point A is further to the right than

its initial value, while point B�s bs1 is further to the left. Opinion reversal, on the other hand,

happens at the periphery of the circle. For instance, point C has a lower value of s0 than point

D but a higher value of bs1: Figure 7 shows the results obtained under �0 = �0:65: In this case,
the dispersion of opinions increases from var (s0) = 0:505 to var (bs1) = 0:675: Similar to Figure
6, points A and B serve as an example of permanent opinion divergence, while C and D serve as

an example of permanent opinion reversal.

35When projected onto the x-axis, the distribution of s0 is not uniform. There will be more points clustered
around the endpoints of the range.
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Figure 6

Figure 7
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Finally, we consider a society in which all agents share the same initial estimates, i.e.,

var (s0) = var (b0) = 0; but have di¤erent covariance matrices in their initial beliefs. In partic-

ular, the value of �1 varies among them so that var (�1) > 0 within the population. Equation

(12) then implies

var (bs1) = var (�1) (s+ b� s0 � b0)2 :
If the agents�initial combined estimate is correct, i.e., s0 + b0 = s+ b; then they will eventually

reach a consensus about s; i.e., var (bs1) = 0; regardless of var (�1) : Does this mean that the

agents have reached a consensus because they have learned the true value of s from the signals?

Quite the opposite. Recall the equation in (4), which is

bst = s0 + �t (mt � s0 � b0) :

By the law of large number, the sample average mt will eventually converge to s+ b: If s0+ b0 =

s + b; then eventually the agents�estimates will respond less and less to the signals as there is

no more surprises, i.e., mt � s0 � b0
p! 0: As a result, any disagreement in �t will be irrelevant

in the long run. The agents�estimate for s will then converge in probability to s0; which means

there is no learning at all.

Barring from this knife-edge case, disagreement in �1 will pave the way for aggregate dis-

agreement in bs1: In particular, the greater the discrepancy between s+ b and s0+ b0; the greater
the dispersion in bs1 across agents.

5 Concluding Remarks

In this paper we extend the canonical Bayesian learning model to allow for an unknown bias term

in the public signals. What we refer to as �bias� is a highly versatile concept that can be the

result of cognitive bias in human judgement, ideological or partisan bias in political information,

or systemic bias in research methods. The upshot of this exercise is an easily tractable model

that can generate a wide array of learning behaviour and outcomes. Given the popularity of

Bayesian learning models in economics, �nance, political science and other related �elds, and the

pervasiveness of persistent disagreement in economic, �nancial and political discourses, we believe

this model can �nd a lot of applications in these areas.
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Appendix

Preliminary Results

We begin with some preliminary results which will be useful in deriving the closed-form solution

in Proposition 1. Suppose (X;Y ) is a random vector that follows a bivariate normal distribution

with mean
�
�x; �y

�
and covariance matrix

264 �2x ��x�y

��x�y �2y

375 :
The probability density function of this distribution satis�es

h (x; y) _ exp
(
� 1

2 (1� �2)

"
(x� �x)2

�2x
� 2�

(x� �x)
�
y � �y

�
�x�y

+

�
y � �y

�2
�2y

#)
;

where _ is the direct proportionality symbol. The terms inside the squared brackets can be

expanded and regrouped to become

x2

�2x
+
y2

�2y
� 2�xy

�x�y
� 2

�x

�
�x
�x
�
��y
�y

�
x� 2

�y

�
�y
�y
� ��x
�x

�
y +

"
�2x
�2x
�
2��x�y
�x�y

+
�2y
�2y

#
:

Using this, we can write

h (x; y) _ exp
�
�1
2

�
�1x

2 + �2y
2 � 2�3xy � 2�4x� 2�5y

��
; (26)

where

�1 �
1

(1� �2)�2x
; �2 �

1

(1� �2)�2y
; �3 �

�

(1� �2)�x�y
; (27)

�4 �
1

(1� �2)�x

�
�x
�x
�
��y
�y

�
; (28)

�5 �
1

(1� �2)�y

�
�y
�y
� ��x
�x

�
: (29)

Conversely, if we are given a density function as in (26), then using the above equations we

can recover the underlying moments
�
�x; �y; �

2
x; �

2
y; �
�
as follows. First, from the three equalities

in (27), we can get

�23 =
�2

(1� �2)2 �2x�2y
= �2�1�2 ) � =

�3p
�1�2

: (30)

33



This in turn implies

1� �2 = �1�2 � �23
�1�2

:

Substituting this into the �rst two equalities in (27) gives

�2x =
�2

�1�2 � �23
and �2y =

�1
�1�2 � �23

: (31)

In order to recover �x and �y; we �rst rewrite (28) and (29) in matrix form

�
1� �2

�264 �4
�5

375 =
264 ��2x �� (�x�y)�1

�� (�x�y)�1 ��2y

375
264 �x
�y

375

)

264 �x
�y

375 = �
1� �2

�
(1� �2) (�x�y)�2

264 ��2y � (�x�y)
�1

� (�x�y)
�1 ��2x

375
264 �4
�5

375 :
Using this, (30) and (31), we can get

�x = �2x�4 + ��x�y�5 =
�2�4

�1�2 � �23
+

�3p
�1�2

p
�1�2

�1�2 � �23
�5

=
�2�4 + �3�5
�1�2 � �23

; (32)

and

�y =
� (�x�y)

�1

(�x�y)
�2 �4 +

��2x
(�x�y)

�2�5 =
�3�4 + �1�5
�1�2 � �23

: (33)

Proof of Proposition 1

Recall that the agent�s initial belief about (s; b) is given by a bivariate normal distribution with

mean (s0; b0) and variance-covariance matrix264 �2s;0 �0�s;0�b;0

�0�s;0�b;0 �2b;0

375 :
As shown in the preliminary �ndings, the probability density function of this distribution satis�es

h (s; b) _ exp
�
�1
2

�
�1s

2 + �2b
2 � 2�3sb� 2�4s� 2�5b

��
;
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where

�1 �
1�

1� �20
�
�2s;0

; �2 �
1�

1� �20
�
�2b;0

; �3 �
�0�

1� �20
�
�s;0�b;0

; (34)

�4 �
1�

1� �20
�
�s;0

�
s0
�s;0

� �0b0
�b;0

�
; (35)

�5 �
1�

1� �20
�
�b;0

�
b0
�b;0

� �0s0
�s;0

�
: (36)

Conditional on (s; b) ; the history of signals mt = fm1; :::;mtg forms an i.i.d. sequence of nor-

mal random variables with mean (s+ b) and variance �2": The sequencem
t has a joint probability

density function f
�
mt j s; b

�
that satis�es

f
�
mt j s; b

�
_ exp

(
�1
2

Pt
i=1 [mi � (s+ b)]2

�2"

)
;

where
tX
i=1

[mi � (s+ b)]2 =
tX
i=1

m2
i � 2 (s+ b) tmt + t

�
s2 + 2sb+ b2

�
;

and mt =
Pt
i=1mi=t: Therefore, after observing mt, the agent�s updated belief has a probability

density function �
�
s; b jmt

�
that satis�es

�
�
s; b jmt

�
_ f

�
mt j s; b

�
h (s; b)

) �
�
s; b jmt

�
_ exp

(
�1
2

"Pt
i=1 (mi � (s+ b))2

�2"
+ �1s

2 + �2b
2 � 2�3sb� 2�4s� 2�5b

#)
:

(37)

The terms inside the square brackets can be regrouped to become

Pt
i=1m

2
i

�2"
+

�
t

�2"
+ �1

�
s2+

�
t

�2"
+ �2

�
b2�2

�
� t

�2"
+ �3

�
sb�2

�
tmt

�2"
+ �4

�
s�2

�
tmt

�2"
+ �5

�
b:

Note that the �rst term in the above expression does not depend on (s; b) ; which means it can

be included in the constant of proportionality. We can then rewrite (37) as

�
�
s; b jmt

�
_ exp

�
�1
2

�
�1;ts

2 + �2;tb
2 � 2�3;tsb� 2�4;ts� 2�5;tb

��
;

where

�1;t =
t

�2"
+ �1; �2;t =

t

�2"
+ �2; (38)
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�3;t = �
t

�2"
+ �3; (39)

�4;t =
tmt

�2"
+ �4; and �5;t =

tmt

�2"
+ �5: (40)

Our task now is to recover the mean vector and the covariance matrix associated with �
�
s; b jmt

�
;

which are bxt and b�t:
From (31), we know

b�2s;t = �2;t
�1;t�2;t � �23;t

and b�2b;t = �1;t
�1;t�2;t � �23;t

:

Combining the equations in (34) and (38) gives

�1;t =
t

�2"
+

1�
1� �20

�
�2s;0

=
�2b;0

�
�2" +

�
1� �20

�
�2s;0t

�
�2"
�
1� �20

�
�2s;0�

2
b;0

; (41)

�2;t =
t

�2"
+

1�
1� �20

�
�2b;0

=
�2s;0

h
�2" +

�
1� �20

�
�2b;0t

i
�2"
�
1� �20

�
�2s;0�

2
b;0

: (42)

Similarly, it can be shown that

�1;t�2;t � �23;t =

�
t

�2"
+ �1

��
t

�2"
+ �2

�
�
�
� t

�2"
+ �3

�2
=

1

�2"

�
(�1 + �2 + 2�3) t+

�
�1�2 � �23

�
�2"
�
: (43)

Using (34) and after some algebraic manipulations, we can get

�1 + �2 + 2�3 =
�2b;0 + �

2
s;0 + 2�0�s;0�b;0�

1� �20
�
�2s;0�

2
b;0

=
�0 + �0�

1� �20
�
�2s;0�

2
b;0

; (44)

and

�1�2 � �23 =
1�

1� �20
�
�2s;0�

2
b;0

: (45)

Substituting (44) and (45) into (43) gives

�1;t�2;t � �23;t =
�2" + (�0 + �0) t

�2"
�
1� �20

�
�2s;0�

2
b;0

(46)

Note that the expressions in (41), (42) and (46) all share the same denominator. Combining (42)

and (46) gives (1). Similarly, (2) can be obtained by combining (41) and (46).
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The covariance term b!t can be obtained as follows: Based on (30) and (31), we can get
b!t � b�tb�s;tb�b;t = �3;tp

�1;t�2;t
�
p
�2;t �

p
�1;t

�1;t�2;t � �23;t
=

�3;t
�1;t�2;t � �23;t

:

From (34) and (39), we can get

�3;t = �
t

�2"
+

�0�
1� �20

�
�s;0�b;0

=
�0�s;0�b;0�

2
" �

�
1� �20

�
�2s;0�

2
b;0t

�2"
�
1� �20

�
�2s;0�

2
b;0

;

where �0�s;0�b;0 = !0 Equation (3) can be obtained by combining this with (46).

Based on (32) and (33), the means associated with the posterior density function �
�
s; b jmt

�
can be expressed as

bst � E �s jmt
�
=
�2;t�4;t + �3;t�5;t

�1;t�2;t � (�3;t)2
; (47)

bbt � E �b jmt
�
=
�3;t�4;t + �1;t�5;t

�1;t�2;t � (�3;t)2
: (48)

Using (38)-(40), we can get

�2;t�4;t + �3;t�5;t =
1

�2"

�
[(�2 + �3)mt + (�4 � �5)] t+ (�2�4 + �3�5)�2"

	
; (49)

�3;t�4;t + �1;t�5;t =
1

�2"

�
[(�1 + �3)mt � (�4 � �5)] t+ (�3�4 + �1�5)�2"

	
: (50)

Using (34)-(36), we can derive

�2 + �3 =
�0�

1� �20
�
�2s;0�

2
b;0

;

�4 � �5 =
�0s0 � �0b0�
1� �20

�
�2s;0�

2
b;0

;

�2�4 + �3�5 =
s0�

1� �20
�
�2s;0�

2
b;0

;

�1 + �3 =
�0�

1� �20
�
�2s;0�

2
b;0

;

�3�4 + �1�5 =
b0�

1� �20
�
�2s;0�

2
b;0

:
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Substituting these into (49) and (50) gives

�2;t�4;t + �3;t�5;t =
(�0mt + �0s0 � �0b0) t+ s0�2"

�2"
�
1� �20

�
�2s;0�

2
b;0

; (51)

�3;t�4;t + �1;t�5;t =
(�0mt � �0s0 + �0b0) t+ b0�2"

�2"
�
1� �20

�
�2s;0�

2
b;0

: (52)

Finally, substituting (46) and (51) into (47) gives

bst =
(�0mt + �0s0 � �0b0) t+ s0�2"

�2" + (�0 + �0) t

=
(�0mt � �0s0 � �0b0) t+ s0

�
�2" + (�0 + �0)

�
t

�2" + (�0 + �0) t

= s0 +
�0t

�2" + (�0 + �0) t
(mt � s0 � b0) ;

which is (4). Equation (5) can be obtained in a similar fashion by substituting (46) and (52) into

(48). This completes the proof of Proposition 1. �

Proof of Proposition 2

Rewrite (1) as follows

b�2s;t =

�
�2" + (�0 + �0) t

�
�2s;0 +

h�
1� �20

�
�2b;0�

2
s;0 � (�0 + �0)

i
t

�2" + (�0 + �0) t

= �2s;0 +

h�
1� �20

�
�2b;0 � (�0 + �0)

i
�2s;0t

�2" + (�0 + �0) t
;

where

��
1� �20

�
�2b;0 � (�0 + �0)

�
�2s;0 = ��2s;0

�
�2s;0 + 2�0�b;0�s;0 + �

2
0�
2
b;0

�
= �

�
�2s;0 + �0�b;0�s;0

�2
= ��20:

Hence, we can write

b�2s;t = �2s;0 � �20t

�2" + (�0 + �0) t
= �2s;0 �

�20
�2"
t + (�0 + �0)

:
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This shows that b�2s;t is strictly decreasing over time. To derive the limit, it is more straightforward
to use (1), which gives

lim
t!1

b�2s;t = lim
t!1

8<:
�2s;0�

2
"

t +
�
1� �20

�
�2b;0

�2"
t + �0 + �0

9=; =

�
1� �20

�
�2b;0

�2s;0 + �
2
b;0 + 2!0

:

The proof for b�2b;t is essentially identical, hence it is omitted. �
Proof of Proposition 3

De�ne �t according to

�t � �t + �t =
(�0 + �0) t

�2" + (�0 + �0) t
.

Then combining (4) and (5) gives

bst +bbt = s0 + b0 + �t (mt � s0 � b0) = �tmt + (1� �t) (s0 + b0) :

) bst +bbt � s� b = �t (mt � s� b) + (1� �t) (s0 + b0 � s� b)| {z }
�

; (53)

where � is a nonrandom constant. For any " > 0;

Pr
����bst +bbt � s� b��� � "� = Pr

��bst +bbt � s� b�2 � "2�

�
E

��bst +bbt � s� b�2�
"2

:

The second line follows from Markov�s inequality. The expectation is taken over the distribution

of mt which is normal with mean (s+ b) and variance �2"=t: Using this fact and (53), we can write

E

��bst +bbt � s� b�2� = �2tE
h
(mt � s� b)2

i
+ (1� �t)2�

=
�2t�

2
"

t
+ (1� �t)2�:

It is easy to verify that �t ! 1 as t!1: Hence, we can conclude that

lim
t!1

Pr
����bst +bbt � s� b��� � "� � lim

t!1

�
�2t�

2
"

t
+ (1� �t)2�

�
= 0:

This completes the proof of Proposition 3. �
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Proof of Proposition 4

Rewrite (3) as

b!t = !0�2"
t �

�
1� �20

�
�2s;0�

2
b;0

�2"
t + (�0 + �0)

:

Taking the limit t!1 gives

lim
t!1

b!t = � �1� �20��2s;0�2b;0
�2s;0 + �

2
b;0 + 2!0

� b!1 < 0:

Equation (3) can also be rewritten as follows

b!t =
!0
�
�2" + (�0 + �0) t

�
�
h
�0 + �0 +

�
1� �20

�
�2s;0�

2
b;0

i
t

�2" + (�0 + �0) t

= !0 �

h
(�0 + �0)!0 +

�
1� �20

�
�2s;0�

2
b;0

i
t

�2" + (�0 + �0) t
:

After some algebraic manipulations, it can be shown that

(�0 + �0)!0 +
�
1� �20

�
�2s;0�

2
b;0 = �0�0:

Hence, we can write

b!t = !0 � �0�0t

�2" + (�0 + �0) t
; for all t:

Using this we can get

b!t+1 � b!t = ��0�0�2"
[�2" + (�0 + �0) t] [�

2
" + (�0 + �0) (t+ 1)]

:

This proves that b!t+1 ? b!t if and only if �0�0 7 0: Using the identity
�0�0 = �

2
s;0�

2
b;0 +

�
�2s;0 + �

2
b;0

�
!0 + !

2
0;

we now have �0�0 7 0 if and only if

�2s;0�
2
b;0 +

�
�2s;0 + �

2
b;0

�
!0 + !

2
0 7 0

,
�
�2s;0 + �

2
b;0

�
!0 + 2!

2
0 7 �

�
�2s;0�

2
b;0 � !20

�
= �

�
1� �20

�
�2s;0�

2
b;0
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, !0 7
�
�
1� �20

�
�2s;0�

2
b;0

�2s;0 + �
2
b;0 + 2!0

� b!1:
The direction of the last inequality is preserved because �2s;0 + �

2
b;0 + 2!0 = var (s+ b) in the

initial belief. This completes the proof of Proposition 4. �

Proof of Proposition 5

Combining (4) and (12) gives

bst � bs1 = �t (mt � s� b+ s+ b� s0 � b0)� �1 (s+ b� s0 � b0)

= �t (mt � s� b) + (�t � �1) (s+ b� s0 � b0) :

De�ne vt � mt � s � b and � � (s+ b� s0 � b0) which is just a constant. Before any signal is

realised, mt is a normal random variable with mean s + b and variance �2"=t: Hence, E (vt) = 0

and var (vt) = E
�
v2t
�
= �2"=t: Using these, we can now write

Pr (jbst � bs1j � ") = Pr (j�tvt + (�t � �1)�j � ")

= Pr
h
(�tvt + (�t � �1)�)2 � "2

i
�

E
h
(�tvt + (�t � �1)�)2

i
"2

:

The last inequality follows from Markov�s inequality. The expectation can be simpli�ed as follows:

E
h
(�tvt + (�t � �1)�)2

i
= �2tE

�
v2t
�
+ (�t � �1)2�2:

Substituting this and E
�
v2t
�
= �2"=t back into the inequality using

Pr (jbst � bs1j � ") � ��t�"
"

�2 1
t
+
(�t � �1)2�2

"2
:

As mentioned in the main text, �t ! �1 as t!1: Therefore, we can write

lim
t!1

Pr (jbst � bs1j � ") = 0:
This completes the proof of Proposition 5. �
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Proof of Proposition 6

These results follow immediately from either (4) or (12). For instance, from (4) we can get

bsyt � sy0 = �t �mt � sy0 � b
y
0

�
;

bszt � sz0 = �t �mt � sz0 � b
z
0

�
:

Hence, bsyt � sy0 � 0 � bszt � sz0 if and only if
�t

�
sz0 + b

z
0

�
� �tmt � �t

�
sy0 + b

y
0

�
:

Part (ii) can be established by applying the same argument on (12). As for opinion reversal, as

explained in the main text, (4) can be rewritten as (24). It follows that bsyt < bszt at any time t if
and only if

sy0 � �t
�
sy0 + b

y
0

�
< sz0 � �t

�
sz0 + b

z
0

�
;

which can be rearranged to become (23). Part (iv) can be replacing �t with �1 in the above

expression. �

Proof of Proposition 7

First consider the case in which �0 > 0 so that �t 2 (0; 1) for all t: Then opinion reversal happens

at time t if and only if �
by0 � b

z
0

�
>
1� �t
�t

�
sy0 � s

z
0

�
, (54)

where
1� �t
�t

=
�2"
�0t

+
�0
�0
;

is decreasing over time if �0 > 0: If both �0 and �0 are strictly positive so that �t 2 (0; 1) for

all t; then the above ratio is strictly positive at all times and decreasing towards zero. If �0 > 0

but �0 < 0 so that �t > 1 for all t; then the ratio is strictly negative for all t and becomes more

negative over time. In both cases,

�
by0 � b

z
0

�
>
1� �t
�t

�
sy0 � s

z
0

�
� 1� �t+k

�t+k

�
sy0 � s

z
0

�
;

with strictly equality holds only if sy0 = s
z
0: This proves that bszt+k > bsyt+k; for all k 2 f1; 2; :::g :
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Next, consider the case when �0 < 0 so that �t < 0 for all t: Then opinion reversal happens

at time t if and only if �
by0 � b

z
0

�
<
1� �t
�t

�
sy0 � s

z
0

�
:

When �0 < 0; the ratio (1� �t) =�t is strictly increasing over time so that

�
by0 � b

z
0

�
<
1� �t
�t

�
sy0 � s

z
0

�
� 1� �t+k

�t+k

�
sy0 � s

z
0

�
;

with strictly equality holds only if sy0 = s
z
0: This proves the desired result. �
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