
Mathematical Appendix

�Sources of Economic Growth in Models with
Non-Renewable Resources�

A. Nested CES Production Functions

In this section, we will verify that Assumption A2 is satis�ed by all the nested CES production 

functions considered in Sections 3 and 4 of the paper. We begin with the speci�cation considered 

in Section 3, which is

F (Kt; Zt) = [�K
�
t + (1� �)Z

�
t ]

1
� ; with � 2 (0; 1) and � < 1;

G (QtXt; AtNt) �
h
' (QtXt)

 + (1� ') (AtNt)
i 1

; with ' 2 (0; 1) and  < 1:

First, consider capital input. If � � 0; then

lim
Kt!0

F (Kt; G (QtXt; AtNt)) = 0;

for any QtXt > 0 and AtNt > 0; regardless of the value of  : Thus, physical capital is essential

for production when � � 0: If � 2 (0; 1) ; then

lim
Kt!0

F1 (Kt; G (QtXt; AtNt)) =1;

regardless of the value of  : Next, consider the inputs of G (�) : When  � 0; we have

lim
Xt!0

G (QtXt; AtNt) = lim
Nt!0

G (QtXt; AtNt) = 0;

lim
Xt!0

G1 (QtXt; AtNt) = '
1

and lim
Nt!0

G2 (QtXt; AtNt) = (1� ')
1

:
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There are now two subcases to consider: If  � 0 and � � 0; then both natural resources and

labour are essential for production, i.e.,

lim
Xt!0

F (Kt; G (QtXt; AtNt)) = lim
Nt!0

F (Kt; G (QtXt; AtNt)) = 0:

If  � 0 and � 2 (0; 1) ; then we can show that

lim
Xt!0

@Yt
@Xt

= (1� �)
(
� lim
Xt!0

�
G (QtXt; AtNt)

Kt

���
+ 1� �

) 1
�
�1

� lim
Xt!0

G1 (QtXt; AtNt) �Qt

= (1� �) � 1 � '
1
 Qt =1:

Likewise,

lim
Nt!0

@Yt
@Nt

= (1� �)
(
� lim
Nt!0

�
G (QtXt; AtNt)

Kt

���
+ 1� �

) 1
�
�1

� lim
Nt!0

G2 (QtXt; AtNt) �At

= (1� �) � 1 � (1� ')
1
 At =1:

If  2 (0; 1) ; then we have

lim
Xt!0

G (QtXt; AtNt) = (1� ')
1
 (AtNt) and lim

Nt!0
G (QtXt; AtNt) = '

1
 (QtXt) ;

lim
Xt!0

G1 (QtXt; AtNt) = lim
Nt!0

G2 (QtXt; AtNt) =1:

Using these we can obtain

lim
Xt!0

@Yt
@Xt

= F2

�
Kt; (1� ')

1
 AtNt

��
lim
Xt!0

G1 (QtXt; AtNt)

�
=1;

lim
Nt!0

@Yt
@Nt

= F2

�
Kt; '

1
 QtXt

��
lim
Nt!0

G2 (QtXt; AtNt)

�
=1:

Note that these results hold regardless of the value of �:

Next, we turn to the production function in (44). There are now only two possible cases: If

 � 0; then all three inputs are essential for production. If  2 (0; 1) ; then we can obtain

lim
Nt!0

@Yt
@Nt

= 'At

8<:'+ (1� ') limNt!0

"
AtNt

K�
t (QtXt)

1��

#� 9=;
1
 
�1

=1;
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lim
Kt!0

@Yt
@Kt

= � (1� ')

8<:' limNt!0

"
K�
t (QtXt)

1��

AtNt

#� 
+ 1� '

9=;
1
 
�1 "

lim
Kt!0

�
Kt

QtXt

���1#
=1;

lim
Xt!0

@Yt
@Xt

= (1� �) (1� ')

8<:' limXt!0

"
K�
t (QtXt)

1��

AtNt

#� 
+ 1� '

9=;
1
 
�1 �

lim
Xt!0

�
Kt

QtXt

���
Qt

= 1:

Note that the production functions in (44) and (45) are essentially identical, except that AtNt

and QtXt have switched place. Thus, using the same line of argument we can show that (45)

satis�es Assumption A2.

We now consider the production function in (46). The �rst thing to note is that labour input

is essential for production regardless of the value of  : If  � 0; then both physical capital and

natural resources are essential for production. What remains is to consider the marginal product

of these inputs when  2 (0; 1) : Straightforward di¤erentiation gives

@Yt
@Kt

= (1� �)'
�
AtNt

QtXt

�� "
'+ (1� ')

�
Kt

QtXt

�� # 1
 
�1 "

'

�
Kt

QtXt

� 
+ 1� '

#� �
 

;

@Yt
@Xt

= (1� �) (1� ')
�
AtNt

Kt

�� "
'

�
QtXt

Kt

�� 
+ (1� ')

# 1
 
�1 "

'+ (1� ')
�
QtXt

Kt

� #� �
 

:

Using these and the following properties,

lim
Kt!0

"
'+ (1� ')

�
Kt

QtXt

�� # 1
 
�1

= lim
Xt!0

"
'

�
QtXt

Kt

�� 
+ (1� ')

# 1
 
�1

=1;

lim
Kt!0

"
'

�
Kt

QtXt

� 
+ 1� '

#� �
 

= (1� ')�
�
 ;

lim
Xt!0

"
'+ (1� ')

�
QtXt

Kt

� #� �
 

= '
� �
 ;

we can get

lim
Kt!0

@Yt
@Kt

= lim
Xt!0

@Yt
@Xt

=1:

Since (46) and (47) are symmetric, the same line of argument can be used to show the desired

properties for (47).
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B. Proof of Theorem 3

We will consider each of the speci�cations in (44)-(47) separately. For each speci�cation we will

�rst verify the existence of a positive constant �� such that Kt = ��Yt for all t under conditions

(vi)-(viii) in Section 3 of the paper.

Speci�cation 1 We begin with the production function in (44). Under this speci�cation, the

�rst-order conditions for the representative �rm�s problem are given by

(1� ')�Y 1� t K� �1
t (QtXt)

(1��) = rt + �; (B.1)

(1� ') (1� �)Y 1� t K� 
t (QtXt)

(1��) �1Qt = (1 + �) pt; (B.2)

'Y 1� t (AtNt)
 �1At = wt: (B.3)

Combining (B.1) and (B.2) gives

ptXt

Kt
=
(1� �) (rt + �)

� (1 + �)
: (B.4)

Suppose conditions (vii) and (viii) are satis�ed, i.e., rt = r� > �� and � t = �� for all t: Then

both pt and Xt are growing at some constant rate. It follows from (B.4) that Kt must also be

growing at a constant rate. Next, dividing both sides of (15) by Kt gives

Kt+1

Kt
=

1

2 + �

wtNt

Kt
� 1� � t

� t

ptXt

Kt
: (B.5)

If conditions (vii) and (viii) are satis�ed, then � t; ptXt=Kt andKt+1=Kt are all constant over time.

Hence, wtNt=Kt must be constant over time as well. Finally, rewrite the production function in

(44) as

Y  
t = ' (AtNt)

 + (1� ')
h
K�
t (QtXt)

1��
i 
:

Substituting (B.2) and (B.3) into this expression gives

Y  
t = wtNtY

 �1
t +

1 + �

1� �ptXtY
 �1
t =) Yt

Kt
=
wtNt

Kt
+
1 + �

1� �
ptXt

Kt
:

This shows that Yt=Kt is constant over time under conditions (vii) and (viii).
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Substituting rt = r� and Kt = ��Yt into (B.1) gives

(1� ')� (��) �1
�

Kt

QtXt

�(��1) 
= (1� ')� (��) �1

 bktbxt
!(��1) 

= r� + �:

This shows that the ratio between bkt and bxt must be constant over time, or equivalently,
bxt+1bxt =

bkt+1bkt =
�

1 + a
=
(1 + q) (1� ��)
(1 + a) (1 + n)

:

By the same token, we can also rewrite (B.2) and (B.3) as

(1 + �) pt = (1� ') (1� �) (��) �1
 bktbxt

!(��1) +1
Qt; (B.6)

wt = ' (��) �1 bk1� t At: (B.7)

Since the ratio between bkt and bxt is constant over time, it follows from (B.6) that pt must be

growing at the same rate as Qt: By (4), we can write

pt+1
pt

= 1 + r� =
Qt+1
Qt

= 1 + q:

The last step is to substitute (B.6) and (B.7) into (16). This will give

(1 + a) (1 + n)bkt+1 = (��) �1
24 '

2 + �
bk1� t �

�
1� ��
��

�
(1� ') (1� �)

1 + �

 bktbxt
!(��1) bkt

35

) (1 + a) (1 + n)
bkt+1bkt = (��) �1

24 '

2 + �
bk� t �

�
1� ��
��

�
(1� ') (1� �)

1 + �

 bktbxt
!(��1) 35 :

Since both bkt+1=bkt and bkt=bxt are constant over time, it follows that the level of bkt must be constant
over time in any equilibrium that satis�es conditions (vi)-(viii). Hence, we have � = 1+a; r� = q;

and (1� ��) = (1 + a) (1 + n) = (1 + q).

Speci�cation 2 Consider the production function in (45). The �rst-order conditions for the

�rm�s problem are now given by

(1� ')�Y 1� t K� �1
t (AtNt)

(1��) = rt + �; (B.8)
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'Y 1� t (QtXt)
 �1Qt = (1 + �) pt; (B.9)

(1� ') (1� �)Y 1� t K� 
t (AtNt)

 (1��)�1At = wt: (B.10)

Combining (B.8) and (B.10) gives

wtNt

Kt
=
1� �
�

(rt + �) ;

which is constant over time under condition (vii). By assumption, both At and Nt grow at some

exogenous constant rate. Condition (vi) implies that Yt is growing at a constant rate, while

condition (vii) states that rt is time-invariant. Thus, it follows immediately from (B.8) that Kt

must be growing at a constant rate. Equation (B.5) then implies that ptXt=Kt.must also be

constant over time under conditions (vi)-(viii). Finally, rewrite the production function in (45)

as

Y  
t = ' (QtXt)

 + (1� ')
h
K�
t (AtNt)

1��
i 
:

Substituting (B.8) and (B.9) into the above expression and rearranging terms gives

Yt
Kt

= (1 + �)
ptXt

Kt
+

�
1� '
�

�
(rt + �) :

Thus, a constant rt and a constant ratio ptXt=Kt will imply a constant capital-output ratio.

Using the two conditions: Kt = ��Yt and rt = r�; we can rewrite the �rst-order conditions

(B.8)-(B.10) as

(1� ') (��) �1 �bk(��1) t = r� + �;

' (��) �1
 bktbxt

!1� 
Qt = (1 + �) pt; (B.11)

(1� ') (1� �) (��) �1 bk(��1) +1t At = wt:

The �rst one of these equations immediately implies that bkt is constant over time, so that � =
1 + a: Substituting the last two equations into (16) gives

Kt+1 = AtNt (�
�) �1

24(1� ') (1� �)
2 + �

bk(��1) +1t �
�
1� ��
��

�
'

1 + �

 bktbxt
!1� bxt

35

) (1 + a) (1 + n)bkt+1 = (��) �1 �(1� ') (1� �)
2 + �

bk(��1) +1t �
�
1� ��
��

�
'

1 + �
bk1� t bxt � :
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Since bkt is constant over time, the above equation implies that bxt must be constant over time as
well. Finally, (B.11) implies that pt must be growing at the same rate as Qt in any equilibrium

that satis�es conditions (vi)-(viii), so that r� = q:

Speci�cation 3 Next, we consider the production function in (46). The equilibrium factor

prices are now characterised by

(1� �)'
h
'K 

t + (1� ') (QtXt)
 
i 1��

 
�1
(AtNt)

�K �1
t = rt + �; (B.12)

(1� �) (1� ')
h
'K 

t + (1� ') (QtXt)
 
i 1��

 
�1
(AtNt)

� (QtXt)
 �1Qt = (1 + �) pt; (B.13)

h
'K 

t + (1� ') (QtXt)
 
i 1��

 
� (AtNt)

��1At = wt: (B.14)

Combining (B.12) and (B.13) gives

ptXt

Kt
=
1� '
'

(rt + �)

(1 + �)

�
QtXt

Kt

� 
: (B.15)

Suppose both rt and � t are constant over time. Then the above expression implies that Kt must

be growing at a constant rate over time. From (B.14), we can get �Yt = wtNt: Substituting this

into (B.5) gives
Kt+1

Kt
=

�

2 + �

Yt
Kt

� 1� � t
� t

ptXt

Kt
: (B.16)

Finally, rewrite (B.12) to become

(1� �)
�
Yt
Kt

�"
'K 

t

'K 
t + (1� ') (QtXt)

 

#
= (rt + �)

=) Yt
Kt

=
(rt + �)

1� �

"
1 +

1� '
'

�
QtXt

Kt

� #
=
rt + �

1� � +
1 + �

1� �
ptXt

Kt
: (B.17)

The second equality is obtained by using (B.15). Equations (B.16) and (B.17) now form a system

of linear equations that can be used to solve for the value of Yt=Kt and ptXt=Kt in terms of

Kt+1=Kt; � t and rt: Since Kt+1=Kt; � t and rt are all time-invariant under conditions (vi)-(viii),

it follows that Yt=Kt and ptXt=Kt are also time-invariant.

Note that the condition Yt = 1
��Kt can be rewritten as

h
'bk t + (1� ') bx t i 1�� =

1

��
bkt
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Using this, we can rewrite (B.12)-(B.14) as

(1� �)' (��)
 
1���1 bk� � 

1��
t = rt + �;

(1� �) (1� ') (��)
 
1���1 bk1�  

1��
t bx �1t Qt = (1 + �) pt;

1

��
�Atbkt = wt:

The �rst of these three equations, together with rt = r�; implies that bkt must be constant over
time. Hence, � = 1 + a: Substituting the last two equations into (16) gives

Kt+1 = AtNt

"
�bkt

(2 + �)��
�
�
1� ��
��

�
(1� �) (1� ')

1 + �
(��)

 
1���1 bk1�  

1��
t bx t

#

) (1 + a) (1 + n)bkt+1 = �bkt
(2 + �)��

�
�
1� ��
��

�
(1� �) (1� ')

1 + �
(��)

 
1���1 bk1�  

1��
t bx t :

Since bkt is constant over time, the above equation implies that bxt must be constant over time as
well. The remaining results follow by the same line argument as in Speci�cation 2.

Speci�cation 4 Finally, we consider the production function in (47). The �rst-order conditions

for the �rm�s problem are now given by

(1� v)' (QtXt)
v
h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
�1
K �1
t = rt + �; (B.18)

� (QtXt)
v�1Qt

h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
= (1 + �) pt; (B.19)

(1� v) (1� ') (QtXt)
v
h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
�1
(AtNt)

 �1At = wt: (B.20)

To start, using (47) and (B.19) we can obtain

ptXt

Kt
=

�

1 + �

Yt
Kt
:

Next, combining (B.18) and (B.20) gives

wtNt

Kt
=
(1� ') (rt + �)

'

�
AtNt

Kt

� 
: (B.21)
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Substituting these into (B.5) gives

Kt+1

Kt
=
(1� ') (rt + �)

' (2 + �)

�
AtNt

Kt

� 
� �

1 + �

�
1� � t
� t

�
Yt
Kt
: (B.22)

We then use (B.18) to derive

Yt
Kt

=

�
rt + �

1� v

�"
1 +

1� '
'

�
AtNt

Kt

� #
: (B.23)

Equations (B.22) and (B.23) form a system of linear equations which can be used to solve for

Yt=Kt and (AtNt=Kt)
 in terms of Kt+1=Kt, rt and � t: By conditions (vii) and (viii), both rt and

� t are time-invariant. Thus, what remains is to show that Kt+1=Kt is a constant under conditions

(vi)-(viii). To this end, rewrite (B.19) as

'K 
t + (1� ') (AtNt)

 =

��
1 + �

�

�
pt
Qt

�  
1��

(QtXt)
 

and substitutes the above expression into (B.18) to get

(1� v)'
��
1 + �

�

�
pt
Qt

� 1��� 
1��

(QtXt)
1� K �1

t = rt + �:

The desired result follows from the fact that rt is time-invariant and fpt; Xtg are growing at

a constant rate under conditions (vii) and (viii). This proves that Yt=Kt is a constant under

conditions (vi)-(viii).

Next, we rewrite equations (B.18) and (B.19) as

(1� v)'bxvt �'bk t + 1� '� 1�v�  bk �1t = rt + � (B.24)

v
Yt
Xt

= vbxv�1t

�
'bk t + 1� '� 1�v Qt = (1 + �) pt: (B.25)

The condition Yt = 1
��Kt can be rewritten as

bxvt �'bk t + 1� '� 1�v =
1

��
bkt: (B.26)
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Combining (B.24), (B.26) and rt = r� gives

1

��
(1� v)'bk t
'bk t + 1� ' = r� + �

) (1� v)'bk t = (r� + �)�� �'bk t + 1� '� :
This can be used to derive a unique solution for bkt which depends only on r� and some parameters.
Hence, � = 1 + a: Equation (B.26) then implies that bxt is also constant over time. Hence,
1 � �� = (1 + a) (1 + n) = (1 + q) : Finally, given bkt = bk� and bxt = bx�; equation (B.25) implies
that pt and Qt must be growing at the same rate. Hence, r� = q:

This concludes the proof of Theorem 3.
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C. In�nitely-Lived Consumers

In this section, we will show that the �knife-edge�condition of a unitary elasticity of substitution

between e¤ective labour input and e¤ective resource input plays the same critical role in generat-

ing endogenous economic growth in an environment with in�nitely-lived consumers. Speci�cally,

an endogenous growth solution similar to the one in Agnani, Gutiérrez and Iza (2005) can be

obtained when the elasticity of substitution of G (�) is identical to one. But if this elasticity

is bounded away from one, then the common growth factor � and interest rate r� are solely

determined by the growth rates of the exogenous technological factors (i.e., At and Qt).

Consider an economy that is populated by H > 0 identical households. Each household

contains a growing number of identical, in�nitely-lived consumers. The size of each household at

time t is given by Nt = (1 + n)
t ; with n > 0: Since all households are identical, we can focus on

the choices made by a representative household and normalise H (which is just a scaling factor)

to one. The representative household solves the following problem:

max
fct;Kt+1;Mt+1g1t=0

1X
t=0

�tNt
c1��t

1� �

subject to the sequential budget constraint

Ntct +Kt+1 + ptMt+1 = wtNt + (1 + rt)Kt + ptMt;

where � 2 (0; 1) is the subjective discount factor; � > 0 is the reciprocal of the elasticity of

intertemporal substitution (EIS); ct denotes individual consumption at time t; Kt and Mt are;

respectively, the household�s holding of physical capital and non-renewable resources; pt; wt and

rt are as de�ned in Section 2.1 of the paper. The �rst-order conditions of this problem imply the

Euler equation for consumption,

ct+1
ct

= [� (1 + rt+1)]
1
� ; (C.1)

and the Hotelling rule,
pt+1
pt

= 1 + rt+1:

We do not consider the resource tax in this setting (i.e., � = 0). The rest of the economy is the

same as in Sections 2.2 and 2.3 of the paper. In particular, the �rst-order conditions for the �rm�s
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problem, (10)-(12), and the dynamic equation for natural resources, (13), remain unchanged. In

any competitive equilibrium, goods market clear in every period so that

Ntct +Kt+1 � (1� �)Kt = F (Kt; G (QtXt; AtNt)) ; for all t � 0: (C.2)

This replaces the capital market clearing condition in (16).

When characterising a balanced growth equilibrium, we maintain the three conditions (vi)-

(viii) listed in Section 3. Note that Lemma 1 is also valid in this environment. First, consider the

case when G (�) takes the Cobb-Douglas form, or equivalently, �G (�) is identical to one. Dividing

both sides of (C.2) gives

Ntct
Kt

+
Kt+1

Kt
� (1� �) = F (Kt; G (QtXt; AtNt))

Kt
:

Hence, in any balanced growth equilibrium, aggregate consumption Ntct must be growing at the

same rate as Kt and Yt: This, together with the Euler equation in (C.1) implies

� = [� (1 + r�)]
1
� ;

where � is again the growth factor of per-capita output in a balanced growth equilibrium.

Next, note that the arguments in Step 1 and Step 2 of the proof of Theorem 1 are built upon

the properties of the production function and the characterising properties of balanced growth

equilibrium. In particular, these arguments do not rely on the consumer side of the economy.

Hence, they remain valid in this environment. Consequently, we have

� = (1 + b)

�
1� ��
1 + n

�1��
;

(1 + r�) (1� ��) = � (1 + n) ;

where 1 + b � (1 + a)� (1 + q)1�� : Using these three equations, we can derive

1 + r� = ��
�
$ (1 + b)

�
$ ;

1� �� = �
1
$ (1 + b)

1��
$ (1 + n) ;

� = �
1��
$ (1 + b)

�
$ ;
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where $ � 1� (1� �) (1� �) : Thus, a unique balanced growth equilibrium exists if

�
1
$ (1 + b)

1��
$ (1 + n) 2 (0; 1) ;

which ensures that �� 2 (0; 1) : Notice that both � and �� are endogenously determined by a

host of factors as in the AGI solution.

Suppose now �G (�) is never equal to one. Since the arguments in Step 1 and Step 2 of the

proof of Theorem 2 remain valid in this environment, we have � = 1 + a; r� = q, bkt = bk� andbxt = bx�: These in turn imply that
1� �� = (1 + a) (1 + n)

1 + q
:
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