
Bayesian Updating with Confounded Gaussian Signals

Let fXjg1j=1 and fYjg
1
j=1 be two independent sequences of iid normal random variables drawn
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; respectively. The variances �2X and �2Y are

assumed to be known, but the means ��X and ��Y are not. The problem is to infer the unknown

parameters from a sequence of confounded signals fRjg1j=1 ; where Rj = Xj + Yj for all j: Since

Xj ? Yj , each Rj is a normal random variable with mean (��X + �
�
Y ) and variance �
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Let f (R1; :::; Rj j ��X ; ��Y ) be the joint density function of (R1; :::; Rj) conditional on (��X ; ��Y ) :
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where Rj is the average value of (R1; :::; Rj) : The prior distribution of (��X ; �
�
Y ) is a bivariate
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Let g (�X ; �Y ) be the density function of the prior distribution, which satis�es
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After observing the realisation of (R1; :::; Rj) ; the density function of the posterior distribution

is given by

h (�X ; �Y j R1; :::; Rj) = f (R1; :::; Rj j �X ; �Y ) g (�X ; �Y ) :

The task here is to express this density function in the following form

h (�X ; �Y j R1; :::; Rj) _ exp
�
�1
2

�
a�2X � 2b�X + c�2Y � 2d�Y � 2e�X�Y

��
:

Once the coe¢ cients (a; b; c; d; e) are determined, the updated moments can be obtained by using
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the formulae in Lemma 4.1 in Farzinnia and McCardle (2010, p.967).

It su¢ ce to consider the sum of the terms in the square brackets in (A.1) and (A.2), i.e.,
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where � is a constant term that does not depend on (�X ; �Y ) : Hence, we can get
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The correct formulae in Theorem 4.2 can be obtained by substituting these into the formulae

in Lemma 4.1. The correct formulae in Theorem 4.1 can be obtained by setting j = 1:
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