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Proof of Lemma 1

The proof is based on a well-known result concerning conditional multivariate normal distributions

which is stated as follows [see, for instance, Greene (2012, p.1042, Theorem B.7)]. Suppose

[X1;X2] has a joint multivariable normal distribution N (�;�), where

� =

264 �1
�2

375 and � =

264 �11 �12

�21 �22

375 :
The marginal distribution of Xi is given by N (�i;�ii) for i 2 f1; 2g : Then the conditional

distribution of X1 given X2 is normal with mean vector

�1;2 = �1 +�12�
�1
22 (X2 � �2) ;

and covariance matrix

�11;2 = �11 ��12��122 �21:

In order to apply this result, �rst note that (s;b;m) has a joint multivariate normal distrib-

ution with mean vector �y and covariance matrix �y given by

�y =

266664
�s

�b

�m

377775 and �y =

266664
�2s 
 �


T �b �

�T �T �m

377775 :

The meaning of � in the covariance matrix has been explained in the main text. The covariances

between b and m are captured by the n-by-n matrix � � E
h
(b� �b) (m��m)T

i
: The (i; j)th

element of � is denoted by �i;j � Cov (bi;mj) = !i + Cov (bi; bj) :

Using the theorem mentioned above, the posterior distribution of (s;b) after observing m is

a normal distribution with mean vector

�0 =

264 �s

�b

375+
264 �

�

375��1m (m��m) ; (A1)
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and covariance matrix

�0 =

264 �2s 



T �b

375�
264 �

�

375��1m �
�T �T

�
: (A2)

It follows that the marginal distribution of s in the voters�posterior belief is also normal. To

derive the posterior mean and posterior variance of s, we �rst de�ne �i;j as the element on the

ith row and jth column of ��1m : Then

264 �

�

375��1m (m��m) =

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
m1 � �m1

...

mn � �mn

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775
| {z }

(n+1)-by-n

266664
Pn

j=1 �1;j

�
mj � �mj

�
...Pn

j=1 �n;j

�
mj � �mj

�
377775

| {z }
n-by-1

:

The �rst entry in the resulting (n+ 1)-by-1 vector is

���1m (m��m) =
nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�
:

It follows from (A1) that the posterior mean of s is

E (s jm) = �s +
nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�

= �s +

nX
j=1

 
nX
i=1

�i�i;j

!
| {z }

�j

�
mj � �mj

�
:

3



Similarly,

264 �

�

375��1m �
�T �T

�
=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
�1 �1;1 � � � �n;1
...

...

�n �1;n � � � �n;n

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
Pn

j=1 �1;j�j
Pn

j=1 �1;j�1;j � � �
Pn

j=1 �1;j�n;j
...

...Pn
j=1 �n;j�j

Pn
j=1 �n;j�1;j � � �

Pn
j=1 �n;j�n;j

377775 :

The (1; 1)th element of the resulting (n+ 1)-by-(n+ 1) matrix is

���1m �
T =

nX
i=1

nX
j=1

�i�i;j�j :

It follows from (A2) that the posterior variance of s is

var (s jm) = �2s �
nX
j=1

 
nX
i=1

�i�i;j

!
�j :

This completes the proof of Lemma 1.

Proof of Lemma 2

Suppose each bi; i 2 f1; 2; :::; ng ; is a deterministic constant normalised to zero, and suppose

�s = 0: Then (s;m) has a joint multivariate normal distribution with zero mean vector and

covariance matrix V given by

V =

264 �2s �T

� �m

375 ;
where � = �2s � 1n: Thus, for Case 1 and Case 2 where signals are unbiased, �i = �2s for all i:

Suppose each "i is drawn from the distribution N
�
0; �2"i

�
; where �2"i = ��1"i : Then the covari-

ance structure of fm1; :::;mng is given by

Cov (mi;mj) =

8><>: �2s + �
2
"i for i = j;

�2s for i 6= j:
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Hence, �m can be expressed as the sum of two n-by-n matrices,

�m = A+ �
2
s1n1

T
n ;

where A is a diagonal matrix with diagonal elements
�
�2"1 ; :::; �

2
"n

�
: The inverse of �m can be

derived using equation (3) in Henderson and Searle (1981, p.53). Speci�cally, this equation states

that for any matrix M = A + ruvT ; where A can be any invertible matrix, r is a scalar, u is a

column vector and vT is a row vector, the inverse can be expressed as

M�1 = A�1 � �A�1uvTA�1; (A3)

where

� =
r

1 + rvTA�1u
:

Hence, by setting r = �2s; u = 1n and v
T = 1Tn ; we can get

��1m = A�1 � �A�11n1TnA�1; (A4)

where

� =
�2s

1 + �2s1
T
nA

�11n
:

Since A is a diagonal matrix, its inverse is simply

A�1 =

266666664

� "1 0 � � � 0

0 � "2
...

...
. . .

...

0 � � � � � � � "n

377777775
: (A5)

It follows that 1TnA
�11n =

Pn
i=1 � "i ; and

� =
�2s

1 + �2s
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
; (A6)
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where � s � ��2s : In addition,

A�11n1
T
nA

�1 =

266666664

� "1

� "2
...

� "n

377777775
�
� "1 � "2 � � � � "n

�
=

266666664

�2"1 � "1� "2 � � � � "1� "n

� "1� "2 �2"2
...

...
. . .

...

� "1� "n � � � � � � �2"n

377777775
: (A7)

Using (A4)-(A7), we can express the elements on any jth column of ��1m as

�i;j =

8><>: � "j � �� "j 2 for i = j;

��� "i� "j for i 6= j;

) �j =

nX
i=1

�i�i;j = �2s� "j

 
1� �

nX
i=1

� "i

!
=

� "j
� s +

Pn
i=1 � "i

:

Substituting these and �i = �2s into Equations (2) and (3) in the paper gives

E (s jm) =
nX
i=1

�imi =

Pn
i=1 � "imi

� s +
Pn

i=1 � "i
=

Pn
i=1 � "i

� s +
Pn

i=1 � "i| {z }
 

�
nX
i=1

�imi| {z }bm
;

where �i � � "i=
Pn

i=1 � "i for all i; and

var (s jm) = 1

� s
�

nX
i=1

�i�i =
1

� s
� 1

� s

Pn
i=1 � "i

� s +
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
:

Finally, under the parties�beliefs, the covariance structure of fm1; :::;mng is given by

Covp (mi;mj) =

8><>: b�2s + �2"j for i = j;

b�2s for i 6= j;

for any given j, and the perceived uncertainty is given by

e�2 = � Pn
i=1 � "i

� s +
Pn

i=1 � "i

�2
varp (bm) ;

where

varp (bm) = nX
j=1

�j

nX
i=1

�iCovp (mi;mj) =

nX
j=1

�j

 b�2s nX
i=1

�i + �j�
2
"j

!
:

Since
Pn

j=1 �j = 1 and �j�
2
"j = (

Pn
i=1 � "i)

�1 for all j; we can simplify the above expression to

6



become

varp (bm) = b�2s +
 

nX
i=1

� "i

!�1
=
(b� s +Pn

i=1 � "i)b� s (Pn
i=1 � "i)

: (A8)

Using the same line of argument and replacing b�2s with �2s, we can show that
var (bm) = (� s +

Pn
i=1 � "i)

� s (
Pn

i=1 � "i)
; (A9)

which is the unconditional variance of bm under the voters�subjective prior belief. This completes

the proof of Lemma 2.

Proof of Proposition 2

Recall that perceived uncertainty e�2 can be expressed as
e�2 = � Pn

i=1 � "i
� s +

Pn
i=1 � "i

�2
| {z }

 2

� b� s +Pn
i=1 � "ib� sPn

i=1 � "i| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : Likewise, any changes inb� s will only a¤ect varp (bm) but not  : Consider the logarithm of  ;

ln = ln

 
nX
i=1

� "i

!
� ln

 
� s +

nX
i=1

� "i

!
:

Totally di¤erentiating this with respect to f ; � s; � "ig gives

d 

 
= � � s

� s +
Pn

i=1 � "i

d� s
� s

+
� s� "i

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)

d� "i
� "i

:

Suppose d� "i = 0; then we have

d 

d� s
= �  

� s +
Pn

i=1 � "i
< 0 ) de�2

d� s
< 0: (A10)

On the other hand, if d� s = 0; then

d 

d� "i
=

� s 

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)
> 0; (A11)

) � "i
 

d 

d� "i
=

� "iPn
i=1 � "i

� s
� s +

Pn
i=1 � "i

=
� "i

(
Pn

i=1 � "i)
2

1

var (bm) :

7



The second equality follows from (A9). Similarly, totally di¤erentiating ln [varp (bm)] with respect
to f ;b� s; � "ig gives

ln [varp (bm)] = ln"b� s + nX
i=1

� "i

#
� lnb� s � ln nX

i=1

� "i

!

dvarp (bm)
varp (bm) = �

Pn
i=1 � "ib� s +Pn

i=1 � "i

db� sb� s � b� s� "i
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

d� "i
� "i

:

When all other factors except b� s are kept constant,
dvarp (bm)

db� s = �
Pn

i=1 � "ib� s +Pn
i=1 � "i

varp (bm)b� s < 0 ) de�2
db� s < 0: (A12)

If d� s = 0; then
dvarp (bm)
d� "i

= � b� svarp (bm)
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

< 0; (A13)

) � "i
varp (bm) dvarp (bm)d� "i

= � � "iPn
i=1 � "i

b� s
(b� s +Pn

i=1 � "i)
= � � "i

(
Pn

i=1 � "i)
2

1

varp (bm) :
The second equality follows from (A8). Equations (A11) and (A13) together prove the statement

in part (b).

Holding � s and b� s constant, the overall e¤ect of changing � "i on e�2 can be determined by
� "ie�2 de�

2

d� "i
= 2

� "i
 

d 

d� "i
+

� "i
varp (bm) dvarp (bm)d� "i

=

�
2

var (bm) � 1

varp (bm)
�

� "i

(
Pn

i=1 � "i)
2 :

Hence,
de�2
d� "i

? 0, 2varp (bm) ? var (bm) :
Using (A8) and (A9), we can show that

2varp (bm) ? var (bm) if and only if
2� s

� s +
Pn

i=1 � "i
? b� sb� s +Pn

i=1 � "i
;

which is equivalent to

� s ?
b� sPn

i=1 � "ib� s + 2Pn
i=1 � "i

:

This completes the proof of Proposition 2.
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Proof of Lemma 3

Suppose � � �1= (n� 1) : The inverse of �" can be shown to take the following form

��1" =
� "

1 + (n� 2) �� (n� 1) �2

266666664

1 + (n� 2) � �� � � � ��

�� 1 + (n� 2) � � � � ��
...

. . .
...

�� � � � �� 1 + (n� 2) �

377777775
: (A14)

To see this, note that all diagonal entries of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
1 + (n� 2) �� (n� 1) �2

�
= 1;

and all o¤-diagonal elements of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
��+ [1 + (n� 2) �] �+ (n� 2) �2

	
= 0:

De�ne the notation � according to

� � � "
1 + (n� 2) �� (n� 1) �2 =

� "
(1� �) [1 + (n� 1) �] :

The covariances among the signals fm1; :::;mng are given by Cov (mi;mj) = �2s+Cov ("i; "j) ;

which implies

�m = �" ++�
2
s1n1

T
n :

Using the same formula in (A3), we can get

��1m = ��1" � ���1" 1n1Tn��1" ; (A15)

where

� =
�2s

1 + �2s1
T
n�

�1
" 1n

=
1

� s + 1Tn�
�1
" 1n

:

It is straightforward to show that

1Tn�
�1
" 1n = n� (1� �) = n� "

1 + (n� 1) �:
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) � =
1 + (n� 1) �

n� " + � s [1 + (n� 1) �]
(A16)

On the other hand,

��1" 1n1
T
n�

�1
" = �2 (1� �)2 1n1Tn : (A17)

Using (A15)-(A17), we can write the elements on any jth column of ��1m as

�i;j =

8><>: � [1 + (n� 2) �]� ��2 (1� �)2 for i = j;

���� ��2 (1� �)2 for i 6= j:

Using these and �i = �2s = ��1s ; we can get

�j =
nX
i=1

�i�i;j =
1

� s

h
� (1� �)� n��2 (1� �)2

i
=

� "
� s [1 + (n� 1) �]

�
1� n� "�

1 + (n� 1) �

�
=

� "
n� " + � s [1 + (n� 1) �]

:

Hence, the posterior mean and posterior variance of s are given by

E (s jm) = n� "
n� " + � s [1 + (n� 1) �]| {z }

 

� 1
n

nX
i=1

mi| {z }bm
;

var (s jm) = 1

� s

 
1�

nX
i=1

�j

!
=

1 + (n� 1) �
n� " + � s [1 + (n� 1) �]

:

From the parties�perspective, the covariance structure of fm1; :::;mng is now given by

Covp (mi;mj) =

8><>: b��1s + ��1" for i = j;

b��1s + ��1" � for i 6= j;
(A18)

and the perceived uncertainty is given by

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
varp (bm) ;
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where

varp (bm) =
1

n2

nX
j=1

nX
i=1

Covp (mi;mj)

=
1

n2

nX
j=1

�
nb��1s + ��1" [1 + (n� 1) �]

	
=

n� " + b� s [1 + (n� 1) �]
n� "b� s : (A19)

Using the same steps, with b��1s replaced by ��1s in (A18), we can show that

var (bm) = n� " + � s [1 + (n� 1) �]
n� "� s

: (A20)

This completes the proof of Lemma 3.

Proof of Proposition 3

Part (a) As shown above,

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
| {z }

 2

� n� " + b� s [1 + (n� 1) �]
n� "b� s| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : In particular,  (and hencee�2) is strictly decreasing in � s when � > �1= (n� 1) : If � = �1= (n� 1) ; then  ; varp (bm) ande�2 are all independent of � s: On the other hand, an increase in b� s will lower e�2 because
varp (bm) = 1b� s + [1 + (n� 1) �]n� "

;

which is strictly decreasing in b� s; and  is independent of b� s:
Part (b) Consider the logarithm of  and varp (bm) ;

ln = lnn+ ln � " � ln fn� " + � s [1 + (n� 1) �]g ;

ln [varp (bm)] = ln fn� " + b� s [1 + (n� 1) �]g � lnn� ln � " � lnb� s:
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Holding f� s;b� s; �; ng constant, consider the total derivatives of these with respect to � "; i.e.,
d 

 
=

� s [1 + (n� 1) �]
n� " + � s [1 + (n� 1) �]

d� "
� "

=
1 + (n� 1) �
n� "var (bm) d� "� " ; (A21)

dvarp (bm)
varp (bm) = � b� s [1 + (n� 1) �]

n� " + b� s [1 + (n� 1) �] d� "� " = 1 + (n� 1) �
n� "varp (bm) d� "� " : (A22)

These show that an increase in � " will raise the value of  but lower varp (bm).
Part (c) The overall e¤ect on e�2 is determined by

� "e�2 de�
2

d� "
= 2

� "
 

d 

d� "
+

� "
varp (bm) dvarp (bm)d� "

:

Using (A21) and (A22), it can be shown that

de�2
d� "

? 0 , 2varp (bm) ? var (bm) :
The condition on the right side is equivalent to

2� s
n� " + � s [1 + (n� 1) �]

? b� s
n� " + b� s [1 + (n� 1) �] ;

which can be simpli�ed to become

� s ?
n� "b� s

2n� " + b� s [1 + (n� 1) �] :
This establishes the condition in part (c).

Part (d) Holding f� s;b� s; � "; ng constant, consider the total derivatives of  and varp (bm) with
respect to �; i.e.,

d 

 
= � � s (n� 1) �

n� " + � s [1 + (n� 1) �]
d�

�
;

dvarp (bm)
varp (bm) = b� s (n� 1) �

n� " + b� s [1 + (n� 1) �] d�� :
Note that these equations are essentially the same as (A21) and (A22) but with opposite sides.

The desired result can be obtained by using the same steps as in part (a). This completes the

proof of Proposition 3.
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Proof of Proposition 4

Part (a) Given that Cov (s;m) = �2s + �s;b�s�b and var (m) = �2s + �2b + �2" + 2�s;b�s�b; we

can write

 =
Cov (s;m)

var (m)
=

�2s + �s;b�s�b

�2s + �
2
b + �

2
" + 2�s;b�s�b

: (A23)

Straightforward di¤erentiation gives

d 

d�s;b
=
�s�b [var (m)� 2Cov (s;m)]

[var (m)]2
;

where

var (m)� 2Cov (s;m) = �2b + �
2
" � �2s:

Hence,

de�2
d�s;b

= 2 
d 

d�s;b
� varp (bm) ? 0 i¤ Cov (s;m) [var (m)� 2Cov (s;m)] ? 0:

Part (b) Di¤erentiating the expression in (A23) with respect to � s gives

d 

d� s
=

n�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2o
[var (m)]2

d�s
d� s|{z}
(�)

:

The expression inside the curly brackets can be simpli�ed as follows

�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2
=

�
2�s + �s;b�b

� �
�2s + �

2
b + �

2
" + 2�s;b�s�b

�
� 2�s

�
�s + �s;b�b

�2
= 2�s

�
�2b + �

2
"

�
+ �s;b�b

�
�2s + �

2
b + �

2
"

�
:

Hence,
d 

d� s
=
�b
�
�2s + �

2
b + �

2
"

�
[var (m)]2

"
�s;b +

2�s
�
�2b + �

2
"

�
�b
�
�2s + �

2
b + �

2
"

�# d�s
d� s|{z}
(�)

:

This, together with

 =
Cov (s;m)

var (m)
=

�s�b
var (m)

�
�s;b +

�s
�b

�
;
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implies that

de�2
d� s

= 2 varp (bm) � d 
d� s

? 0 i¤
�
�s;b +

�s
�b

�"
�s;b +

2
�
�2b + �

2
"

��
�2s + �

2
b + �

2
"

� �s
�b

#
7 0:

Part (c) Di¤erentiating the expression in (A23) with respect to � b gives

d 

d� b
=
�s
�
�s;bvar (m)� 2

�
�s + �s;b�b

� �
�b + �s;b�s

�	
[var (m)]2

d�b
d� b|{z}
(�)

:

The term inside the curly brackets can be simpli�ed as follows:

�s;bvar (m)� 2
�
�s + �s;b�b

� �
�b + �s;b�s

�
= �s;b

�
�2s + �

2
b + �

2
" + 2�s;b�s�b

�
� 2

�
�s + �s;b�b

� �
�b + �s;b�s

�
= �

�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
:

Hence,
d 

d� b
= � ��s

[var (m)]2
�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

� d�b
d� b|{z}
(�)

It follows that

de�2
d� b

= 2 varp (bm) � d 
d� b

? 0 i¤
�
�s;b +

�s
�b

��
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
? 0:

Part (d) This result follows immediately from the fact that  is independent of
�b� s;b� b;b�s;b	 :

Part (e) Since Cov (s;m) is independent of � "; straightforward di¤erentiation yields

de�2
d� "

= [Cov (s;m)]2
�

1

[var (m)]2
dvarp (m)

d� "
� 2 varp (m)

[var (m)]3
dvarp (m)

d� "

�
:

Note that
dvar (m)

d� "
=
dvarp (m)

d� "
=
d�2"
d� "

= ��4" < 0:

Combining these two equations gives

de�2
d� "

=

�
Cov (s;m)

var (m)

�2 �2varp (m)
var (m)

� 1
�
�4" ? 0 i¤ 2varp (m) ? var (m) :

14



This completes the proof of Proposition 4.

Derivation of Equation (32) in the Paper

Consider an arbitrary voter with �v 2 R: Conditional on m; the voter�s expected utility if R wins

is

E
�
U
�
x�eq; �v

�
jm
�

= �E
h�
�v +  bm� x�eq

�2 jmi� var (s jm)
= �

n�
�v � x�eq

�2
+ 2

�
�v � x�eq

�
 bm+ ( bm)2 + var (s jm)o :

Similarly, the voter�s expected utility if L wins is

E
�
U
�
�x�eq; �v

�
jm
�
= �

n�
�v + x

�
eq

�2
+ 2

�
�v + x

�
eq

�
 bm+ ( bm)2 + var (s jm)o :

Before m is realised, the voter�s expected utility is

E
�
U
�
x�eq; �v

��
=

Z 1

0
E
�
U
�
x�eq; �v

�
jm
�
dG (bm) + Z 0

�1
E
�
U
�
�x�eq; �v

�
jm
�
dG (bm)

= �
�
1

2

�
�v � x�eq

�2
+
1

2

�
�v + x

�
eq

�2
+ var (s jm)

�
�
�
2
�
�v � x�eq

�
 

Z 1

0
bmdG (bm) + 2 ��v + x�eq� bmZ 0

�1
bmdG (bm)�

� 2
Z 1

�1
bm2dG (bm)

= 4 x�eq

Z 1

0
bmdG (bm)� h�2v + �x�eq�2 + var (s jm) +  2var (bm)i : (A24)

The last line follows from the fact that G (�) is the CDF of a symmetric distribution around zero,

hence Z 1

�1
bmdG (bm) = 0 and

Z 0

�1
bmdG (bm) = �Z 1

0
bmdG (bm) :

Using the formula,

Z 1

0
x2n+1 exp

�
�Ax2

�
dx =

n!

2An+1
; for A > 0 and n = 0; 1; 2; :::;
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we can get

Z 1

0
bmdG (bm) = 1p

2��m

Z 1

0
bm exp h� �2�2m��1 (bm)2i dbm =

�mp
2�
:

Substituting this into (A24) gives

E
�
U
�
x�eq; �v

��
= 2

r
2

�
x�eq �m �

�
x�eq
�2 � ��2v + var (s jm) +  2var (bm)� : (A25)

Finally, by the law of total variance, we can get

var (s jm) +  2var (bm) = ��1s : (A26)

To see this, �rst recall that �s in the voter�s subjective prior belief is normalised to zero, hence

the variance of s in their prior belief is given by

��1s = var (s) = E
�
s2
�
= E

�
E
�
s2 jm

��
;

where the outer expectation is taken with respect to the joint distribution of m: It follows that

��1s = E
n
var (s jm) + [E (s jm)]2

o
= var (s jm) +

Z 1

�1
[E (s jm)]2 dG (bm) : (A27)

The last line uses the facts that var (s jm) is a deterministic constant according to Equation (3)

in the paper and E (s jm) is a function of bm. Since the expected value of bm is zero,

Z 1

�1
[E (s jm)]2 dG (bm) = var [E (s jm)] =  2var (bm) : (A28)

Substituting (A28) into (A27) gives (A26). Combining (A25) and (A26) gives

E
�
U
�
x�eq; �v

��
= 2

r
2

�
x�eq �m �

�
x�eq
�2 � ��2v + ��1s � ;

which is Equation (32) in the paper.
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Proof of Proposition 5

The second inequality in Equation (33) in the paper can be rewritten as

2

r
2

�
 �m � x�eq =

2�� h (0)
4h (0)�+ 2

, 2
p
2 �m [4h (0)�+ 2] � 2

p
���

p
�h (0)

, 4
p
2 �m +

p
�h (0) � 2

hp
� � 4

p
2 �mh (0)

i
�:

There are two possible cases: If
p
� � 4

p
2 �mh (0) � 0; or equivalently,

e�
 �m

=

s
varp (bm)
var (bm) � 4

�
;

then the second inequality in Equation (33) is automatically satis�ed. This means E
�
U
�
x�eq; �v

��
�

E [U (0; �v)] for any x�eq � 0:

But if
p
� � 4

p
2 �mh (0) > 0; or equivalently,

e�
 �m

=

s
varp (bm)
var (bm) > 4

�
;

then the second inequality in Equation (33) holds if and only if

� �
p
2 �m +

p
�h (0)

2
�p
� � 4

p
2 �mh (0)

� = p
� (8 �m � e� + )
2
p
2 [�e� � 4 �m] :

This completes the proof of Proposition 5.

Proof of Proposition 6

Suppose var (bm) = varp (bm) ; which implies  �m = e�: Then Equation (32) in the paper can be
rewritten as

E
�
U
�
x�eq; �v

��
= 2

r
2

�
e�x�eq � �x�eq�2 � ��2v + ��1s � ;

for any x�eq > 0; or equivalently e� > �min: Straightforward di¤erentiation yields

d

dz
E
�
U
�
x�eq; �v

��
= 2

r
2

�

�e�dx�eq
dz

+ x�eq
de�
dz

�
� 2x�eq �

dx�eq
dz

=

"
2

 r
2

�
e� � x�eq

!
dx�eq
de� + 2

r
2

�
x�eq

#
de�
dz
:
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The second line uses the chain rule of di¤erentiation,

dx�eq
dz

=
dx�eq
de� � de�

dz
:

As shown in Corollary 1, x�eq is strictly increasing in e� whenever e� > �min: This, together with

x�eq > 0 and condition (35) in the paper, means that
p
2=�e� � x�eq is a su¢ cient condition for

d

dz
E
�
U
�
x�eq; �v

��
> 0:

Recall that the extent of polarisation x�eq is determined by

x�eq =
2�� h (0)
4h (0)�+ 2

; where h (0) � 1=
�e�p2�� :

Hence, x�eq can also be expressed as

x�eq =
2
p
2��e� � 

4�+ 2
p
2�e� = 2

p
2�� (e� � �min)
4�+ 2

p
2�e� ; where �min �



2
p
2��

:

The su¢ cient condition
p
2=�e� � x�eq can now be rewritten as

e� � �� (e� � �min)
2�+

p
2�e�

, e� �2�+p2�e�� � �� (e� � �min)
,
p
2�e�2 � � (� � 2) e� + ���min � 0: (A29)

Consider the following quadratic equation:

p
2�y2 � � (� � 2) y + ���min = 0:

Since � (� � 2) > 0 and ���min > 0; this equation has two distinct real roots. The sum and

the product of roots are, respectively, given by �� (� � 2) < 0 and ���min > 0: Hence, the two

roots must be negative-valued. This in turn implies that
p
2�y2 � � (� � 2) y + ���min > 0 for

all y � 0: Hence, (A29) is valid for any e� > �min > 0: This proves the desired result.
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