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This contains proofs of the theoretical results in the paper.



Proof of Lemma 1

The proof is based on a well-known result concerning conditional multivariate normal distributions
which is stated as follows [see, for instance, Greene (2012, p.1042, Theorem B.7)]. Suppose
[X1,X,] has a joint multivariable normal distribution N (u, 3), where

Y11 X9
n= H and 3= ! !

o o1 XYoo

The marginal distribution of X; is given by N (u;,3;;) for i € {1,2}. Then the conditional

distribution of X7 given Xj is normal with mean vector

Mio = pp + 21222_21 (Xa — o),

and covariance matrix

S0 =311 — Z1285 Boy.

In order to apply this result, first note that (s, b, m) has a joint multivariate normal distrib-

ution with mean vector u! and covariance matrix 37 given by

s i Q A
ph=1 and  B'=|0" u o
i, AT e’ x,

The meaning of A in the covariance matrix has been explained in the main text. The covariances
between b and m are captured by the n-by-n matrix @ = F [(b — ) (m—p, )T| . The (i, j)th
element of © is denoted by 6; ; = Cov (bjm;) = w; + Cov (b;, b;) .

Using the theorem mentioned above, the posterior distribution of (s, b) after observing m is

a normal distribution with mean vector

W= + 2 (m—p,) (A1)



and covariance matrix

o2 Q A

wo | T | T AT e | (A2)
o 3, ©
It follows that the marginal distribution of s in the voters’ posterior belief is also normal. To

derive the posterior mean and posterior variance of s, we first define x; ; as the element on the

ith row and jth column of ¥, 1. Then

A1 An
A P P R1,1 - Rin m1 = Py
1,1 1n
2m1 (m_l'l’m) =
S
Rn1 - Knn Mp — Wy,
i Hn,l Hn,n ]
A1 An
Zj:l k1,5 (mj F‘m;)
B 011 O1.n X
> Fn (mj . )
Hn,l en,n ~~ ’
- ~ n-by-1
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The first entry in the resulting (n + 1)-by-1 vector is
n n
AZH (m—p,) =0 Niki (mj - Mmj) :
i=1 j=1
It follows from (A1) that the posterior mean of s is

E(s|m) = pg+ anzn:/\mj (mj - Mmj)

i=1 j=1

= us+ i <i )\mi,j> <mj - ij) .
j=1 \i=1
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Similarly,

)\1 )\n B
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A . - 011 010
Yo | AT © =
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The (1,1)th element of the resulting (n + 1)-by-(n + 1) matrix is

A AT = Zn: Zn: NikijAj.
i=1 j=1

It follows from (A2) that the posterior variance of s is

var (s | m) = o2 — i (i Aiﬁi,j) Aj.

j=1 \i=1

This completes the proof of Lemma, 1.

Proof of Lemma 2

Suppose each b;, i € {1,2,...,n}, is a deterministic constant normalised to zero, and suppose
ty = 0. Then (s,m) has a joint multivariate normal distribution with zero mean vector and

covariance matrix V given by
o2 AT
V= )
A X,

where A = 02 x 1,,. Thus, for Case 1 and Case 2 where signals are unbiased, \; = o2 for all i.

Suppose each ¢g; is drawn from the distribution NV (0, agi) , Where agi = 7';,1. Then the covari-

ance structure of {myq,...,my} is given by

2 2 . .
oS+ oz fori=yj,
Cov (m;, mj;) = T
o2 for i # j.



Hence, X,,, can be expressed as the sum of two n-by-n matrices,

S =A+0%1,17,

2 2

o ...,O’En) . The inverse of 3, can be

where A is a diagonal matrix with diagonal elements (O’
derived using equation (3) in Henderson and Searle (1981, p.53). Specifically, this equation states
that for any matrix M = A + ruv’, where A can be any invertible matrix, r is a scalar, u is a

column vector and v7 is a row vector, the inverse can be expressed as

M 1=A"1—¢AtuvTATY (A3)
where
- r
14+ rvTA-u’

2

2 u=1, and vl = 1%, we can get

Hence, by setting r = o
e l=A"1-¢eA11,1TA7Y (A4)

where

2
O

T 1t021TA 11,

§

Since A is a diagonal matrix, its inverse is simply

[ T O 0 ]
Ao | )T (A5)
| 0 Ten |
It follows that 17A=11, =31 7., and
f= B = (46)

_ s
- 2 n n )
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where 74 = 022, In addition
S b

2
Tey Tey Te1Tes Te1Tey,
2
T Tei T T
A_ll 1TA_1 o £2 - €1'¢€2 50
n-n - . Ter Tex 00 Ten | T
2
_Tsn_ _TEngn ) .« .. TSTL

Using (A4)-(AT7), we can express the elements on any jth column of ! as

2 s
Te;, — &1, 7 for i = j,

—&Te, e, for i # j,

n n
2 T&‘]’
= aj = g Aikiij =057, [ 1—¢& g Te | = TS S .
i=1 i=1 Ts i=1Te;

Substituting these and \; = o2 into Equations (2) and (3) in the paper gives

S Te,my ST n
E; (2 = 15
E(s|m)= g oam; = =1 _°i = =5 g ¢;mi,
7'8‘1‘2@ 1Tei Tst 21 7e i1
—_— =
——
v i

where (; = 7.,/ > 1 T, for all ¢, and

| 1
var (s | m) ——Z)\a— - — i=l S )
( | ! Ts TsTs + Zzl:]_ 7—51‘ Ts + Z?:l TE»L'

Finally, under the parties’ beliefs, the covariance structure of {mj,...,my} is given by

o2+ agj for i = j,
Covy, (mi, mj) = ,
o for i # j,

S

for any given j, and the perceived uncertainty is given by

n 2
52 _ < Zi:lnTa ) var, (,r’h) ’
Ts + Zi:l Te;

where

vary (M ZCJZQCOU;D mi, M) :ZCJ' (agzgiJFCjUgj) :
j=1 i=1

(A7)

Since > 7, (; = 1 and ¢ jagj =020 TEi)il for all j, we can simplify the above expression to



become

var =52 T _ Gt dimae)
p() =0 <Z ) Py 7e) (A9

Using the same line of argument and replacing 33 with 02, we can show that

s 49

var (m) =

which is the unconditional variance of m under the voters’ subjective prior belief. This completes

the proof of Lemma 2.

Proof of Proposition 2

Recall that perceived uncertainty 52 can be expressed as

2
52 — ( i1 T > Tst D i1 Te
Ts + 2 i1 Teq Tsdlie1 Tei

17;3 var;r(fﬁ)

It is clear that any changes in 7, will only affect ¢ but not var, (m). Likewise, any changes in

75 will only affect vary, (m) but not . Consider the logarithm of 1,

Iny =1n (i'rei) —1In (Ts + i75i> .
i=1 i=1

Totally differentiating this with respect to {¢, 75,7, } gives

dvp Ts drs TsTe; dre,

=~ %4 :
(0 Ts+ Z:‘L:l Te; Ts (Z:'L:1 Te,) (Ts + Z?:1 Te;) Te

Suppose d7., = 0, then we have

d ~9
b, L@
dr T+ D i1 Te, dr

< 0. (A10)

On the other hand, if dr; = 0, then

d,(vb TS
= n n > 07 (All)
dre, (Zi:1 7'81-) (7s + Zi:1 Tfi)
e d €4 s €4 1
N Te, dY _ Te; T _ Te;

Vdre, Y Te Ts T i Te (30 . TEZ')Z var (m)

1=



The second equality follows from (A9). Similarly, totally differentiating In [var, (m)] with respect

to {1, Ts, Te, } gives

In[var, (m)] =1n

n n
Ts+ Z Tgi] —In7, —In (Z TEZ.)
i=1 i=1

dvar, (m) S Te, dTs TsTe, dr.,

varp (T?L) _?5 + Z?:l Te; ?S - (Z?:l T8i) (?S + Z?:l Tﬁi) Te; '

When all other factors except T4 are kept constant,

dvar, (m) Yo Te,  varp(m) de?
_ o 2inTe . A12
7, Ay o 0T E < (A12)
If drs = 0, then
dvary, (m) Tsvary (M)
= - _ <0, A13
dre, (Zi:l 761) (Ts + Zi:l 7_57;) ( )
Te, dvarp(m) T Ts o Te, 1
vary (M) dre, Do Te, (Ts + 200 Tey) (X0 7e;)? vary (M)

The second equality follows from (A8). Equations (A11) and (A13) together prove the statement
in part (b).

Holding 7, and 75 constant, the overall effect of changing 7., on 52 can be determined by

T, do’ 7., dip Te,  dvary (m)
52 dr, a Y dre,  wvarp(m) dre,
2 1 Te.

K3

var () var, (M) | (S0, 7.)%

Hence,
d?

dre,

2 0 & 2vary, (m) 2 var (m).

Using (A8) and (A9), we can show that

~

27 < Ts

2uar, (M) = var (m if and only if — ,
p( )2 @ Ts+Z?leai = T5+Z?=17—5i

which is equivalent to

~ n
- Ts Zi:l Te;
s < = n .
Ts+2 Zi:1 Te;

This completes the proof of Proposition 2.



Proof of Lemma 3

Suppose p > —1/(n — 1). The inverse of 3. can be shown to take the following form

1+ (n—2)p —p —p

(A14)

To see this, note that all diagonal entries of 3.3 are given by

1
[+ (n—2)p—(n—1)p

[1+(n=2)p-(n-1)p"] =1,

and all off-diagonal elements of X.X_! are given by

1
1+ (n—=2)p—(n

e {=p+[1+(n—-2)plp+(n—2)p*} =0.
Define the notation v according to

Te Te

TTIr -2 m-DF A-p) I+ -1

The covariances among the signals {m1, ..., my } are given by Cov (m;, m;) = o2+ Cov (g, £5),
which implies

¥, =3+ +0%1,17,

Using the same formula in (A3), we can get
B =0t - s, e (A15)

where

2
o 1

=1 +o21727 11,  ro4+17%7M1,

It is straightforward to show that

NnTe



B 1+(n—-1)p
:>§_n75+73[1—|—(n—1)p]

On the other hand,

» 1,172 =02 (1 - p)2 1,10

Using (A15)-(A17), we can write the elements on any jth column of X1 as

vIL+(n—2)p -2 (1—p)? fori=j,

—vp— &2 (1—p)? for i # j.

Kij =

1

Using these and \; = 02 = 7, !, we can get

aj = D Nikij = Ti [V(l —p) —n&v® (1 - P)ﬂ
i=1 s

Te B nr€
el e e
nte +7s[1+(n—1)p]

Hence, the posterior mean and posterior variance of s are given by

n
NTe 1
E = .= )
(5 | ) nte +7s[L+ (n—1)p] n;m“
—
m

(4

_i - n o) = 1+(n—1)p
Uar(s|m)—TS (1 ; j) nte + 7514+ (n—1)p]

From the parties’ perspective, the covariance structure of {mi,...,m,} is now given by

7 4 -1 fori=j
Covy, (mi, mj) = L o
F Tl fori# )

and the perceived uncertainty is given by

NnTe

- {me+75[1+(n—1)p]}2w”<m)’

10

(A16)

(A7)

(A18)



where

N 1 n n
vary (M) = EZZCovp(mi,mj)

j=1i=1

= YR I - 1))
j=1

nte +7s[L+ (n—1)p]

= - ) A19
NT:Ts (AL9)
Using the same steps, with ?5_1 replaced by 751 in (A18), we can show that
1 -1
var (m) = et s [L+ (= 1)) : (A20)
NT:Ts
This completes the proof of Lemma 3.
Proof of Proposition 3
Part (a) As shown above,
52_{ nTe }2‘n75+?5[1+<n—1)p]
nre+7s[1+(n—1)p]) NTeTs 3
P2 varp(m)

It is clear that any changes in 7, will only affect ¢ but not var, (m). In particular, ¢ (and hence

&%) is strictly decreasing in 74 when p > —1/(n—1). If p = —1/(n — 1), then %, var, (M) and

2

52 are all independent of 75. On the other hand, an increase in 75 will lower &2 because

~ 1 1 —1
var iy — L (L =1)0]

Ts NTe
which is strictly decreasing in 74, and 1) is independent of 7.
Part (b) Consider the logarithm of ¢ and vary, (m),

Inyp=Inn+Int. —In{nr. +75[1+ (n—1)p|},

Infvar, (m)] =In{nr. +7s[1+(n—1)p]} —Inn —In7. — In7,.

11



Holding {7, 7s, p,n} constant, consider the total derivatives of these with respect to 7., i.e.,

dp 1[I+ (n—-1)p] dre 1+(n—1)pdrc (A21)
Y nTe+Ts[l+(n—1)p] Tc nrevar (M) 7¢ '
dvary(7) ___ F [+ 0-1)p]  dre 1+ (n-1)pdr. o
vary (M) T+ T+ (n—1)p] T nrevary (M) 7o

These show that an increase in 7. will raise the value of ¢ but lower var, (m).

Part (c) The overall effect on 32 is determined by

Ed52 T dY T dvary (m)
2dre T apdre  warp,(m)  dre

Using (A21) and (A22), it can be shown that

d52
da 20 & 2var,(m) 2 var (m).
Te

The condition on the right side is equivalent to

~

2T, - Ts
nte + 751+ (n— 1) p] < nte+7s[1+(n—1)p]

which can be simplified to become

NT:Ts

> .
TS 471+ (n—1) )

This establishes the condition in part (c).

Part (d) Holding {7, 75, 7c,n} constant, consider the total derivatives of ¢ and var, (m) with

respect to p, i.e.,

a Ts(n—1)p dp
Y nte+Ts[l+(n—1)p] p’
dvary (m) Ts(n—1)p dp

var, (M)  nre+7s[L+(n—1)p] p°
Note that these equations are essentially the same as (A21) and (A22) but with opposite sides.

The desired result can be obtained by using the same steps as in part (a). This completes the

proof of Proposition 3.
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Proof of Proposition 4

Part (a) Given that Cov(s,m) = 02 4 p, 0503 and var (m) = 0% 4 0} + 02 + 2p, 0 s0p, We

can write

_ Cov(s,m) o2 + Psp0s0b (A23)
var (m) 02407 +02+2p,,0505

(8

Straightforward differentiation gives

di _ 0s0b [var (m) — 2Cov (s,m)]
dpsp [var (m)]2

)

where

var (m) — 2Cov (s,m) = o2 + 02 — o2

Hence,

~2
B,
dps,b dps,b

-vary (M) 2 0 it  Cov(s,m)[var (m)—2Cov(s,m)] = 0.

Part (b) Differentiating the expression in (A23) with respect to 75 gives

i {(203 + pe o) var (m) — 20 (o + psybab)2} do,

drs [var (m)]? drs

(=)

The expression inside the curly brackets can be simplified as follows

(205 + pgpop) var (m) — 20, (o5 + p57bab)2
= (205 + PS,bUb) (a§ + 0% + O'g + 2P5,b050b) — 205 (05 + p57bab)2

= 20, (0% + og) + P50 (az + ok + ag) .

Hence,
dy oy (02 + 07+ 02) n 205 (07 + 02) dos
drs [var (m))? Pab op (02402 +02)| drs

This, together with
(8

var (m) var (m

Cov(s,m 050 O
= ( ) = b ) <ps,b + ) s

13



implies that

ds* . dy Ts 2(0p +02) o,
=2 . =0 iff _—\o6 - TE) <0
ir Yoary, (m) ar. < 1 <Ps,b + o ) |Pob + (02 + 02 + 02) 7% =

Part (c) Differentiating the expression in (A23) with respect to 7, gives

&y _ oy {pspvar (m) —2 (o5 + pspos) (00 + psp0s) } doy,

dryp [var (m)]? @‘
)

The term inside the curly brackets can be simplified as follows:

pspvar (m) — 2 (08 + Ps,bgb) (Ub + p57b05)
= Psp (0? + a% + Ug + 2p57basab) -2 (as + Ps,bUb) (O'b + ps7bas)

= — [psyb (aﬁ + ai — a?) + 20301,] .

Hence,
dw _US 2 2 2 dab
— = |pep 05 + 0} —0Z) + 2050 —
dry, [var (m)]2 [,0 o ( b 6) b] dtp
)
It follows that
do* . dy
— = 2Yvary, (M) 2

. o
i . dT'b =0 iff <p87b + UZ> [ps,b (O’? + 02 — a?) + 20501,} 2 0.

Part (d) This result follows immediately from the fact that 1 is independent of {?3,?1),?871,} .

Part (e) Since Cov (s, m) is independent of 7., straightforward differentiation yields

dc? _ (Cov (s,m)]2{ 1 i dvary (m) o VaTp (m)3 dvary, (m) }
dre [var (m)] dre [var (m)] dre
Note that
dvar (m) _ dvar,(m) do? 4
dr. — dr. = dr. e <0.

Combining these two equations gives

45> [COU (s,m)r [2varp (m) _ 1] o>

dr. | var (m) var (m)

14



This completes the proof of Proposition 4.

Derivation of Equation (32) in the Paper

Consider an arbitrary voter with §,, € R. Conditional on m, the voter’s expected utility if R wins

is

E[U (x:q;év) | m]|
= —F [(&, + M —xzq)2 | m] —wvar (s | m)

= _ {((51, — :U:q)2 +2 (51; — xzq) WP+ (wﬁL)z +var (s | m)} )
Similarly, the voter’s expected utility if L wins is
E[U (~2,;6,) | m] = — {(5v +at) 42 (6, + ) v + (im)? + var (s | m)} .

Before m is realised, the voter’s expected utility is

EU (a%,:6,)] = /OOOE[U(eq, ) | m] dG (i / E[U (~a%,;6,) | m] dG ()
1 %\ 2 "
- — [2 (60 —a%,)" + B (5U + xeq) + var (s | m)]

[e’e) 0

— [2 (60 — xky) ¥ / mdG () + 2 (0, + %) v / mdG (m)]
0 —00

—q? / h m2dG (m)

S L /OOO mdG (m) — [53 + (mzq)Q + var (s | m) + Yvar (ffz)} . (A24)

The last line follows from the fact that G (+) is the CDF of a symmetric distribution around zero,

0o 0 00
/ MmdG (M) =0  and / MdG () = — / MdG (i)
—00 —00 0

Using the formula,

hence

00 |
/0 " exp (—Aa:Q) dr = 2/3%-5-1’ for A>0and n=0,1,2,...,

15



we can get

1
V2Tom

/000 MG () = /OOO mrexp [~ (203) 7" (@)?] di = T

Substituting this into (A24) gives

2
EU (z},;60)] = 2\/;x:q1/10m - (m:q)2 — [62 + var (s | m) + ¢?var ()] . (A25)
Finally, by the law of total variance, we can get

var (s | m) + ¢Y2var (M) = 7, 1. (A26)

s

To see this, first recall that u, in the voter’s subjective prior belief is normalised to zero, hence

the variance of s in their prior belief is given by

7l =wvar(s)=E (52) =E[E (s m)],

s

where the outer expectation is taken with respect to the joint distribution of m. It follows that

ol = E{var (s|m)+[E(s] m)]z}
= war(s|m)+ /OO [E (s | m)]2dG (7). (A27)

—0o0

The last line uses the facts that var (s | m) is a deterministic constant according to Equation (3)

in the paper and E (s | m) is a function of m. Since the expected value of m is zero,
/ [E (s | m)]?dG (i) = var [E (s | m)] = ¢?var (i) . (A28)

— 00

Substituting (A28) into (A27) gives (A26). Combining (A25) and (A26) gives

B0 (528.)) = 22ty — (52" = (52 +771)

which is Equation (32) in the paper.
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Proof of Proposition 5

The second inequality in Equation (33) in the paper can be rewritten as

2 . _20-9h(0)
2\@"% = = 0) 6+ 2

& 23 [4h.(0) 6+ 2] > 2v/76 — YTk (0)
& 4V + Varh (0) > 2 [\F — 4V 2pomh (0)] ¢.

There are two possible cases: If \/7 — 4v/2¢0,,,h (0) < 0, or equivalently,

o [|vary(m) <
Vo, \| var(m) ~

SEES

)

then the second inequality in Equation (33) is automatically satisfied. This means F [U (xzq; (51,)] >
EU (0;6,)] for any z7, > 0.
But if /7 — 4v/210,,,h (0) > 0, or equivalently,

o vary (M)
— = > —,
Yo var(m) = w

W

then the second inequality in Equation (33) holds if and only if

¢ < \/iiﬁdm + \/E’Yh (0) _ ﬁ (81/10m -0+ 7) .
= 3 [Va— V20omh(0)]  2v2[n5 — o

This completes the proof of Proposition 5.

Proof of Proposition 6

Suppose var (m) = var, (M), which implies 9o, = ¢. Then Equation (32) in the paper can be

rewritten as
2 J —
B [U (xz‘l; 5”)] = 2\/;‘733;1 - ($:q)2 - (53 + 75 1) ,

for any z7, > 0, or equivalently & > oin. Straightforward differentiation yields

d * — 2 ~dxzq * do * dxzq
%E [U (xeq,év)} = 2\/; (U dzj + xequ> — 2.7}6(1 . dz

2 dz} 2 do
DY Y S e R Ny e r
[ ( 7ra xeq> do + \/;qu] dz




The second line uses the chain rule of differentiation,

* * ~
d:ceq B da:eq do

dz ds dz’

As shown in Corollary 1, z7, is strictly increasing in & whenever o > opin. This, together with

x3, > 0 and condition (35) in the paper, means that \/2/mo > =7, is a sufficient condition for

Recall that the extent of polarisation z}, is determined by

q

« _ 20—7h(0) (=
To, = MOEES: where h(0) =1/ (0\/%) .

Hence, %, can also be expressed as

q

. 2V27¢5 —y  2v/27¢ (G — Omin) L "
Teg = — = —, where omin = .
4¢ + 2V/270 4¢ + 2V 270 2271

The sufficient condition /2/7w0 > :r:q can now be rewritten as

7P (0 — Omin)
20+ V2mo

o>
o5 (2¢ + Ma) > 76 (5 — Omin)
& V212 — ¢ (1 —2) G + TG min > 0. (A29)

Consider the following quadratic equation:
V2ry? — ¢ (m — 2) y + T min = 0.

Since ¢ (r —2) > 0 and Tpomin > 0, this equation has two distinct real roots. The sum and
the product of roots are, respectively, given by —¢ (7 —2) < 0 and 7¢omin > 0. Hence, the two
roots must be negative-valued. This in turn implies that v27y? — ¢ (7 — 2) y + Td0omin > 0 for

all y > 0. Hence, (A29) is valid for any o > opmin > 0. This proves the desired result.
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