Standard Risk Aversion and Efficient Risk Sharing
Technical Appendix (Not for publication)

By Richard M. H. Suen

The purpose of this technical appendix is to provide a detailed description of the numerical
example presented in the paper. Specifically, we consider a couple who share risk efficiently between

themselves and make joint investment decisions. The first agent is assumed to have constant-

absolute-risk-aversion (CARA) utility,

up (¢) =1— ;exp (—oc), with ¢ > 0.

The second agent is assumed to have constant-relative-risk-aversion (CRRA) utility,

, with ¢ > 0.
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Note that both agents have nondecreasing absolute risk tolerance and nonincreasing absolute

prudence, hence both of them have standard risk aversion.

The representative agent’s utility function @ (-) is obtained by solving a resources allocation

problem. Specifically, for any given Pareto weights, A1 > 0 and Ay > 0, and for any z > 0,

u(z) = max{\ju; (c1) + Aqua (c2)}

C1,C2

subject to ¢1 > 0, c2 > 0 and ¢; 4 c2 < z. The solution of this problem involves a pair of sharing

rules, k1 (2z) and ko (z), that are completely determined by

u' (2) = Mexp[—or1 (2)] = Ao [k (2)] 77,



k1 (2) + ke (2) = 2.
Using Equations (5) and (7) in the paper, we can derive the representative agent’s absolute

risk tolerance and absolute prudence, i.e.,

T(2) = Tilka ()] + Tala ()] = 5 + v (2) >0,

P2) = (11 k1 (D))} Py [k (2)] + {Ta [m2 (2)]}? Pa o (2)] 5+ 55 k2 (2)
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Straightforward differentiation then yields

P ) = fl’[;é(,(:)j?’ [; <i - 1) - 1;%2 (z)} .

Since o > 0, k4 () > 0 and T (2) > 0,

~ 1—
P'(z;M,00) 20 if and only if ;<1+Z>2m2(z;)\1,)\2).

Thus, a necessary condition for P’ (z) > 01is 1 > o. Once this is granted, p (z) is strictly increasing
when kg (z) is sufficiently small. The above condition also highlights the fact that the Pareto
weights have a role in determining the slope of p (2).

The main idea of the numerical examples is to show that when P (z) is non-monotonic (or
locally increasing), it is possible to find a pair of random variables (z,y) such that the couple (as
a group) will invest more in the risky asset in the presence of background risk. In the following
examples, we take as our benchmark case: A1 = 1.5, Ao = 1.0, ¢ = 0.1 and ¢ = 0.4. Figure A1 plots
the function P (z) under three different values of o, {0.3,0.4,0.5} . The other parameter values are
as in the benchmark case. Figure A2 plots the function p (z) under three different values of @,
and Figure A3 shows what happen to P (z) when we change the value of A\;. These diagrams show
that the shape, as well as the level, of P (z) is rather sensitive to changes in {0, $, A1} . In all the

case that we considered, P (2) is increasing when z [and hence kg (2)] is small.
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Suppose w = 4.5 and the excess returns of the risky asset has only two possible states, ;1 = —0.2

and zo = 0.24, with equal probability. Let aj be the level of risky investment in the absence of

background risk. This can be obtained by solving
| K~ 1., *~
ST (w+ aj7) + %2l (W+ajZ2) =0

= % {Z1 exp [— K1 (W + ajT1)] + Taexp [— oK1 (w + @] T2)]} = 0.

The value of o] is reported in Table Al.
Next, we introduce a background risk 3 which has three possible states: {—2,0,2.6} , with equal
probability. In order to apply the variant of Proposition 6 in Kimball (1993, p.610), the following

condition has to be satisfied
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,Zzu/(w—{—alxi—l—yj) > 2;1/(&)4-0411'1')- (C1)
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This is verified in Table Al. Since @ (-) has a decreasing absolute risk aversion, condition C1 is

satisfied by any unfair background risk, i.e., E (y) < 0. But this is not a necessary condition for



Table Al

Benchmark Changing o Changing ¢ Changing A\
o 0.4 0.3 0.5 0.4 0.4 0.4 0.4
10) 0.1 0.1 0.1 0.09 0.11 0.1 0.1
A1 1.5 1.5 1.5 1.5 1.5 1.0 2.0
Ao 1.0 1.0 1.0 1.0 1.0 1.0 1.0
w 4.5 4.5 4.5 4.5 4.5 4.5 4.5
EU (w+ajZ +7)] 0.6961 0.6966 0.6960 0.7160 0.6779 0.7719 0.6670
E[W (w+ af7)] 0.6957 0.6948 0.6965 0.7168 0.6762 0.7713 0.6671
Is C1 satisfied? Yes Yes No No Yes Yes No
o] 5.0928 5.3828 4.7860 6.1647
fa% 5.1054 5.4015 4.7921 6.1545

C1 to hold as attested by our results in Table A1. We are only interested in those cases in which
condition C1 is satisfied. The optimal level of risky investment in the presence of background risk

(denoted by «3) is then obtained by solving

3 3
1. N -~ 1. N o~
5o E U (w+ 05T +75) + 52 E ' (w+a3T2) =0

Jj=1 J=1
) 3 3
1)~ o~ |~ - e~ o~
=50 > " exp [~ ¢k (w+ 03T + )] + T2 Y exp[—dry (w+ b2 + ;)] p = 0. (Eq.1)
i=1 i=1

Table Al shows that in the benchmark scenario, i.e., o0 = 0.4, ¢ = 0.1 and A\; = 1.5, condition C1
is satisfied and the couple will increase their risky investment when there is background risk. Similar
results can be obtained under three other combinations of {0, ¢, A1} . Finally, Table A2 compares
the couple’s joint investment decision to those made the agents when they are acting alone. Note
that the portfolio choice of agent 1 (with CARA utility) is unaffected by the background risk when
acting alone. This can be easily seen by setting k; (2) = z in Eq.1. But agent 2, with strictly
increasing absolute risk tolerance and strictly decreasing absolute prudence, will significantly lower

his/her risky investment in the presence of background risk.



Table A2

Joint Decision

Agent 1 alone

Agent 2 alone

E U (w+ ajz +y)]
Et (w+ aj7)]

Is C1 satisfied?

0.4
0.1
4.5

0.6961
0.6957
Yes

5.0928
5.1054

0.1
4.5

0.2823
0.2582
Yes

1.3812
1.3812

0.4

4.5

0.6654
0.6430
Yes

6.1971
5.0582




