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Abstract

Is a more heterogeneous population bene�cial or harmful to long-term economic perfor-

mance? This paper addresses this and other questions in a dynamic general equilibrium model

where consumers have di¤erent labour productivity and time preference. We show how dif-

ferences in the cross-sectional distribution of these characteristics can a¤ect the economy via

two channels. The �rst one involves changing the composition of the labour force; and the

second one involves changing the cross-sectional distribution of marginal tax rate. We show

how these channels are, respectively, determined by the shape of the labour supply function

and the curvature of the marginal tax function.
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1 Introduction

Is a more heterogeneous population bene�cial or harmful to long-term economic performance?

What role does redistributive policy, such as progressive taxation, play in this matter? This

paper addresses these questions using a dynamic general equilibrium model with heterogeneous

consumers. In particular, the consumers are ex ante di¤erent in their labour productivity and

time preference.1 Our goal is to analyse how di¤erences in the cross-sectional distribution of these

characteristics a¤ect long-term economic outcomes.

The economic implications of diversity have long been a subject of empirical research.2 Several

recent studies have provided evidence on the positive e¤ect of ethnic and cultural diversity on

productivity and economic growth (e.g., Ottaviano and Peri, 2006; Ager and Brückner, 2013;

Trax et al., 2015; Alesina et al., 2016).3 In contrast, there has been very few theoretical research

on this timely and important issue. This lack is somewhat surprising, given the prominence

of heterogeneous-agent models in macroeconomics. The present study makes the �rst attempt to

examine the issue of diversity using this type of model. Speci�cally, we adopt a similar deterministic

neoclassical framework as in Sarte (1997), Li and Sarte (2004), Carroll and Young (2009, 2011) and

Angyridis (2015). In these models, ex ante heterogeneity is the root cause of income and wealth

inequality.4 Progressive taxation comes into play by distorting prices and incentives, which in turn

in�uences how ex ante heterogeneity translates into ex post economic inequality. The distribution

of consumer types is typically taken as invariant in these previous studies. Thus, the e¤ects of its

changes are largely unexplored. The present study is intended to �ll this gap.

The main points of this paper can be explained in terms of two types of e¤ects, namely compo-

sition e¤ects and general equilibrium e¤ects. The former refers to changes in aggregate quantities

due to changes in the composition of the underlying population, while the latter refers to changes

1Time preference heterogeneity has been previously considered in Sarte (1997), Li and Sarte (2001), Carroll and
Young (2011), Suen (2014) and Angyridis (2015) among others. The empirical evidence on this type of heterogeneity
has been reviewed in Frederick et al. (2002). We are agnostic about the source of consumer heterogeneity, which can
be due to racial, cultural, physiological or other reasons. Throughout this paper, we will treat the terms �diversity�
and �ex ante heterogeneity�as synonymous.

2For extensive survey of this literature, see Alesina and La Ferrara (2005) and Alesina et al. (2016).
3The analysis in Ottaviano and Peri (2006), Ager and Brückner (2013) and Trax et al. (2015) are based on

micro-level data from developed countries, such as Germany and the United States. Alesina et al. (2016), on the
other hand, conduct cross-country comparisons using aggregate level data from 195 countries. Other cross-country
studies, such as Easterly and Levine (1997) and Collier and Gunning (1999), focus on African countries and �nd a
negative relation between ethnic diversity and economic growth.

4 Implicitly, it is assumed that there is perfect consumption insurance so that individuals�choices are una¤ected
by idiosyncratic risks. Keane and Wolpin (1997) and Huggett et al. (2011) argue that predetermined di¤erences in
consumer characteristics are more important than idiosyncratic risks in explaining the dispersion in lifetime wealth
and lifetime utility.
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in individual-level quantities caused by the adjustment in equilibrium prices.5 The exact nature

of these e¤ects depend on the type of heterogeneity considered. In the case of labour productivity

heterogeneity, these e¤ects primarily take place in the labour market. Speci�cally, any changes

in the cross-sectional distribution of labour productivity will alter the composition of the labour

force. This induces a shift in the aggregate labour supply function, thus triggering an adjustment

in equilibrium wage rate (and interest rate), and in turn a¤ects individuals�labour supply decision.

Using general speci�cations of utility function, production function and progressive tax function,

we derive conditions under which a more dispersed distribution of labour productivity will give

rise to a higher level of aggregate labour supply and aggregate output in the steady state. Under

these conditions, greater diversity will also bene�t individual consumers by boosting their pre-tax

income and consumption.

The case of time preference heterogeneity is more complicated due to the following reasons.

Firstly, any changes in the cross-sectional distribution of time preference will not only a¤ect the

composition of the labour force, but also the cross-sectional distribution of pre-tax incomes; and

these two changes often have con�icting e¤ects on equilibrium prices. Secondly, the composition

e¤ect on aggregate labour supply is now more di¢ cult to determine due to an income e¤ect on

individual labour supply. In light of these di¢ culties, the analysis of time preference heterogeneity

is divided into three steps. First, in Section 4.1 we consider a simpli�ed model in which labour

supply is perfectly inelastic. This essentially shuts down the e¤ect of time preference heterogeneity

on aggregate labour supply. We then focus on how changing the distribution of time preference

will a¤ect the cross-sectional distribution of pre-tax income and marginal tax rates.6 In the con-

text of representative-agent models, the negative relation between marginal tax rate and capital

accumulation is well understood: lowering the marginal tax rate can promote capital accumulation

by raising the after-tax return on savings.7 In this paper, we show that changing the distribu-

tion of time preference can have a similar e¤ect on capital accumulation, even when there is no

change in the tax function itself. The exact outcome of this is determined by the curvature of

5 If we think of aggregate variables (e.g., aggregate consumption expenditure) as a weighted sum of the correspond-
ing micro-level variables (e.g., household consumption expenditure), then the composition e¤ect refers to changes in
the weights while the general equilibrium e¤ect concerns changes in the value of the micro-level variables.

6Since the tax function is assumed to be continuously di¤erentiable, striclty increasing and strictly convex, there
exists a one-to-one mapping between pre-tax income and marginal tax rate. Hence, the distribution of these two
variables are isomorphic.

7Empirical evidence on this is scant, however, mainly because of the di¢ culty in measuring marginal tax rate.
For this reason, many studies focus on the relation between average tax rate and economic growth. One exception is
Padovano and Galli (2001) which construct country-wide point estimates of e¤ective marginal tax rate for 23 OECD
countries over the period 1951-1990 and show that this measure is negatively correlated with economic growth.
The question of how the distribution or dispersion of marginal tax rates would a¤ect aggregate economic outcomes,
however, remains unexplored.
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the marginal tax function, which is an often overlooked feature of the tax function.8 Speci�cally,

if the marginal tax function is concave, then a mean-preserving but more dispersed distribution

of time preference will lead to a lower average marginal tax rate and a higher level of capital

accumulation. The opposite is true if the marginal tax function is convex. The intuition of these

results can be explained as follows: Start with a homogeneous economy in which all consumers are

ex ante identical and have the same pre-tax income. Suppose now a mean-preserving dispersion

in time preference is introduced. This will create a non-degenerate distribution in pre-tax income

and marginal tax rate. In particular, the relatively poor consumers in the heterogeneous economy

will pay a lower marginal tax rate than in the homogeneous world, and the relatively rich will

pay a higher rate. The shape of the marginal tax function matters when it comes to aggregation.

If the marginal tax function is concave, then the decrease in marginal tax rate among the poor

will outweigh the increase among the rich. As a result, the heterogeneous economy will have a

lower average marginal tax rate than the homogeneous economy.9 Our main results in Section

4.1 generalise this comparison to two heterogeneous economies and provide the conditions under

which greater diversity is bene�cial or harmful to capital accumulation. Next, in Section 4.2 we

resume the assumption of elastic labour supply but abstract away from the income e¤ect. This is

achieved by using the so-called �no-income-e¤ect�utility function. In this case, the e¤ect of time

preference heterogeneity on aggregate labour supply can be easily characterised. In particular, if

the marginal rate of substitution (MRS) between consumption and labour is a convex (or concave)

function, then a mean-preserving spread in the distribution of time preference will lead to a down-

ward (or upward) shift in the aggregate labour supply function. Finally, in Section 4.3 we provide

some numerical examples to illustrate the composition e¤ects and the general equilibrium e¤ects

in the full version of the model, where the income e¤ect on labour supply is operative. Under some

plausible parameter values, we �nd that a mean-preserving dispersion in time preference has only a

mild positive e¤ect on the capital-labour ratio (and hence the equilibrium prices), but a signi�cant

negative impact on aggregate labour supply. The latter is the result of a negative composition

e¤ect on the labour force.

The rest of the paper is organised as follows: Section 2 presents the baseline model. Section 3

analyses the e¤ects of greater labour productivity heterogeneity. Section 4 focuses on the e¤ects

8 If a tax function � (�) is thrice di¤erentiable, then the corresponding marginal tax function is concave (or convex)
if and only if the third-order derivative � 000 (�) is negative (or positive). It is important to note that almost all the
existing quantitative studies on progressive taxation have adopted a speci�cation which implies a concave marginal
tax function (see Section 4.1 for details). But the relation between this and the distribution of marginal tax rates
has not been previously reported.

9The e¤ects under a convex marginal tax function are similar but in opposite directions.
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of time preference heterogeneity. Section 5 concludes.

2 The Baseline Model

2.1 Consumers

Time is discrete and is denoted by t 2 f0; 1; 2; :::g : Consider an economy inhabited by a continuum

of in�nitely-lived consumers with di¤erent rate of time preference and labour productivity. The

size of population is constant over time and is normalised to one. Let �i > 0 be the rate of time

preference of the ith consumer, i 2 [0; 1] ; and "i > 0 his labour productivity. Both are predeter-

mined and constant over time. The joint distribution of these characteristics across consumers is

given by H (�; ") ; which is de�ned on the support
�
�; �
�
� ["; "] ; with � > � > 0 and " > " > 0:

This distribution can be either discrete or continuous (or mixed). The marginal distribution of �

and " are, respectively, denoted by H1 (�) and H2 (") :

In each time period, each consumer has one unit of time which can be divided between labour

and leisure. Let ni;t and li;t denote, respectively, the fraction of time spent on working and leisure

activities by the ith consumer at time t: These variables are subject to the following constraints:

ni;t 2 [0; 1] ; li;t 2 [0; 1] ; and ni;t + li;t = 1: (1)

There is a single commodity in this economy which can be used for consumption and investment.

Let ci;t be the consumption of the ith consumer at time t: All consumers have preferences over

sequences of consumption and labour hours which can be represented by

1X
t=0

�tiU (ci;t; ni;t) ; (2)

where �i � (1 + �i)�1 is the subjective discount factor of the ith consumer and U (�) is the (per-

period) utility function. The latter is identical for all consumers and has the following properties.

Assumption A1 The utility function U : R+ � [0; 1] ! R is twice continuously di¤erentiable,

strictly increasing in c, strictly decreasing in n and jointly strictly concave in (c; n) : For every

n 2 [0; 1] ; there exists c (n) � 0 such that Uc (c; n)!1 as c! c (n) :

Assumption A2 The marginal rate of substitution (MRS) between consumption and labour,

denoted by 	(c; n) � �Un (c; n) =Uc (c; n) ; is non-decreasing in c and strictly increasing in n:
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The last part of Assumption A1 is similar in spirit to the Inada condition on the utility function.

Speci�cally, c (n) � 0 can be interpreted as a subsistence level of consumption (which may depend

on n). When a consumer is close to subsistence, the marginal utility of consumption will become

in�nitely large. Thus, the consumer will never choose to consume at c (n) : Assumption A2, on

the other hand, ensures that consumption and leisure are both normal goods.10 This assumption

is equivalent to

Ucn (c; n) �
Un (c; n)

Uc (c; n)
Ucc (c; n) and Unn (c; n) <

Un (c; n)

Uc (c; n)
Ucn (c; n) ;

for all (c; n) : Both assumptions are satis�ed by a large set of utility functions, including (i) the

additively separable speci�cation,

U (c; n) =
c1�� � 1
1� � �A n

1+�

1 + �
;

with � > 0; A > 0 and � > 0; (ii) the �no-income-e¤ect� utility function or GHH preferences,

named after the work of Greenwood et al. (1988),

U (c; n) =

�
c�An1+�

�1�� � 1
1� � ; (3)

with � > 0; A > 0 and � > 0; and (ii) the homothetic utility function,

U (c; n) =

h
c� (1� n)1��

i1��
� 1

1� � ; (4)

with � � 1 and � 2 (0; 1) :11 For the additively separable and the homothetic speci�cations,

the subsistence level of consumption in Assumption A1 is identical to zero, i.e., c (n) = 0 for

all n: For GHH preferences, we set c (n) � An1+� since the marginal utility of consumption

Uc (c; n) =
�
c�An1+�

���
becomes in�nite when c tends to An1+�:

Next, we turn to consider the consumers�budget constraint. Let wt be the wage rate for an

e¤ective unit of labour at time t: Then consumer i�s labour income at time t is given by wt"ini;t:

Consumers can save and borrow through a single risk-free asset. Let ai;t denote consumer i�s asset

10This means, holding other things constant, an increase in non-wage income in the current period will lead to an
increase in current consumption and a decrease in current labour supply. This normality assumption is commonly
used in existing studies. See for instance, Nourry (2001) and Datta et al. (2002).
11By setting � = (1 + &)�1 and � = 1 � ��1 (1� e�) ; we can rewrite (4) as U (c; n) = � [c (1� n)& ]1�e� = (1� e�) ;

with & > 0 and e� � 1: This is essentially the utility function considered in King et al. (1988), except for a positive
multiplicative constant. Thus, Assumptions A1 and A2 are also satis�ed by this type of utility functions.
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holdings at the beginning of time t: The consumer is in debt if this falls below zero. The interest

income (or interest payment) associated with these assets is given by rtai;t; where rt is the interest

rate. The sum of labour income and interest income, denoted by yi;t � wt"ini;t + rtai;t; is subject

to a progressive tax schedule � (�).12 The properties of the tax function are summarised below:

Assumption A3 The function � : R+ ! R+ is continuously di¤erentiable and strictly increasing.

The marginal tax rate is zero at the origin, i.e., � 0 (0) = 0; strictly increasing for all y � 0 and

satis�es lim
y!1

� 0 (y) = � � 1:

The assumption of an increasing marginal tax rate is often referred to as marginal rate pro-

gressivity. If � (0) � 0; then marginal rate progressivity is equivalent to average rate progressivity,

i.e., average tax rate � (y) =y is increasing in y: A negative value of � (0) can be interpreted as a

lump-sum transfer from the government. Conversely, a positive � (0) can be viewed as a lump-sum

tax appended to the progressive tax schedule. In this case, the average tax rate is non-monotonic

in y.13

Consumer i�s budget constraint at time t can be expressed as

ci;t + ai;t+1 � ai;t = yi;t � � (yi;t) : (5)

Taking prices and tax schedule as given, each consumer chooses a sequence of consumption, leisure,

labour and asset holdings so as to maximise his lifetime utility in (2), subject to the time-use

constraints in (1), the sequential budget constraint in (5) and the initial amount of assets a0 > 0.14

There is no other restriction on borrowing except the no-Ponzi-scheme condition, which is implied

by the transversality condition stated below. The solution of the consumer�s problem is completely

characterised by the sequential budget constraint in (5); the Euler equation for consumption

Uc (ci;t; ni;t) = �iUc (ci;t+1; ni;t+1)
�
1 +

�
1� � 0 (yi;t+1)

�
rt+1

	
; (6)

12This setup, which is commonly used in existing studies, implicitly assumes that interests paid on loans are tax
deductible. This assumption is adopted mainly for analytical convenience. In most countries, interests paid on
personal loans are in general not deductible from taxes. In the United States, for instance, taxpayers can claim
deductions on interests paid on student loans and residential mortgages but not on other types of loans (such as
credit card debts).
13The sign of � (0) is immaterial for all of our theoretical results.
14The current framework can be easily extended to allow for heterogeneity in initial wealth. But since we focus

on steady-state analysis, this type of heterogeneity is irrelevant for our results.
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the optimality condition for labour supply

	(ci;t; ni;t)� wt"i
�
1� � 0 (yi;t)

�
8>>>><>>>>:
� 0 if ni;t = 0;

= 0 if ni;t 2 (0; 1) ;

� 0 if ni;t = 1;

(7)

and the transversality condition

lim
T!1

8<:
"
TY
t=1

�
1 + 'i;t

�#�1
ai;T+1

9=; = 0;

where 'i;t � [1� � 0 (yi;t)] rt is the after-tax interest rate. The conditions in (7) take into account

the possibility of corner solution for ni;t: For instance, it is optimal to have ni;t = 0 if the relative

price of leisure, i.e., wt"i [1� � 0 (yi;t)] ; is less than or equal to the MRS at ni;t = 0; i.e., 	(ci;t; 0) :

2.2 Production and Government

On the supply side of the economy, there is a large number of identical �rms. In each time period,

each �rm hires labour and rents physical capital from the competitive factor markets, and produces

output using a neoclassical production function: Yt = F (Kt; Nt) ; where Yt denotes output at time

t; Kt and Nt denote capital input and labour input, respectively. The properties of the production

function are summarised below.

Assumption A4 The production function F : R2+ ! R+ is twice continuously di¤erentiable,

strictly increasing and strictly concave in (K;N) : It also exhibits constant returns to scale (CRTS)

in the two inputs and satis�es the Inada conditions.

Since the production function exhibits CRTS, we can focus on the pro�t-maximisation problem

of a single representative �rm. Let Rt be the rental price of physical capital at time t. Then the

representative �rm�s problem is

max
Kt;Nt

fF (Kt; Nt)� wtNt �RtKtg ;

and the �rst-order conditions are Rt = FK (kt; 1) and wt = FN (kt; 1) ; where kt � Kt=Nt is the

capital-labour ratio at time t:

The government collects taxes from the consumers and spends them entirely on �unproductive�
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government purchases (Gt) : This spending is called unproductive because it has no direct impact

on the consumers�well-being and the production of goods. The government�s budget constraint

at any time t is given by Z 1

0
� (yi;t) di = Gt; for all t � 0: (8)

2.3 Competitive Equilibrium

Given a progressive tax schedule, a competitive equilibrium consists of sequences of allocations

fci;t; li;t; ni;t; ai;tg1t=0 for each i 2 [0; 1] ; aggregate inputs fKt; Ntg1t=0 ; prices fwt; rt; Rtg
1
t=0 and

government spending fGtg1t=0 such that

(i) Given prices, fci;t; li;t; ni;t; ai;tg1t=0 solves consumer i�s problem.

(ii) Given prices, fKt; Ntg1t=0 solves the representative �rm�s problem in every time period.

(iii) The government�s budget is balanced in every time period.

(iv) All markets clear in every time period, so that

Kt =

Z 1

0
ai;tdi; and Nt =

Z 1

0
"ini;tdi; for all t � 0:

We con�ne our attention to stationary equilibria or steady states of this economy. These can

be characterised as follows: For any non-trivial steady state with capital-labour ratio k > 0; let

w (k) and r (k) be the corresponding wage rate and interest rate. To highlight the dependence

of individual choices on (�; ") ; we use y (k; �; ") ; c (k; �; ") ; a (k; �; ") and n (k; �; ") to denote,

respectively, the pre-tax income, consumption, asset holdings and labour supply of a type-(�; ")

consumer in this steady state (the subscript i will be omitted from this point on). These individual-

level variables are completely determined by

� = r (k)
�
1� � 0 [y (k; �; ")]

	
; (9)

c (k; �; ") = y (k; �; ")� � [y (k; �; ")] ; (10)

a (k; �; ") =
y (k; �; ")� w (k) "n (k; �; ")

r (k)
; (11)
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	 [c (k; �; ") ; n (k; �; ")]� w (k)

r (k)
"�

8>>>><>>>>:
� 0 if n (k; �; ") = 0;

= 0 if n (k; �; ") 2 (0; 1) ;

� 0 if n (k; �; ") = 1:

(12)

Equation (9) is obtained by setting Uc (ci;t; ni;t) = Uc (ci;t+1; ni;t+1) in the Euler equation of

consumption.15 The intuition behind this equation is as follows: In any stationary equilibrium, each

consumer will maintain a constant level of marginal utility of consumption across time. This can be

achieved if and only if the after-tax interest rate is equal to the consumer�s rate of time preference.

Such parity has two implications. Firstly, consumers with the same rate of time preference will

face the same marginal tax rate and have the same level of pre-tax income, regardless of their

labour productivity. In other words, y (k; �; ") is independent of ": Secondly, for any � in
�
�; �
�
;

y (k; �) is a strictly decreasing function in k: This is due to the following mechanism: Holding other

things constant, an increase in k will lower the pre-tax interest rate and create an incentive for

the consumer to substitute future consumption for current consumption. In order to maintain a

constant marginal utility of consumption, it is necessary for the marginal tax rate to fall so as to

maintain the equality in (9). Since � 0 (�) is strictly increasing, this leads to a lower level of pre-tax

income for all �: In the sequel, we will refer to this as the intertemporal smoothing e¤ect. Note

that this e¤ect arises only when the income tax schedule is nonlinear.16 Equation (10) is obtained

by setting ai;t+1 = ai;t in the sequential budget constraint. This, together with (9), implies that

c (k; �; ") is also independent of ": Equation (11) follows from the de�nition of pre-tax income.

Equation (12) is obtained by substituting (9) into (7).

We now derive a single equation that can help determine the steady-state value of k: To start,

de�ne � : [0; � ]! R+[f+1g as the inverse function of � 0 (�), i.e., � [� 0 (y)] = y for all y � 0: Since

the marginal tax function is continuous and strictly increasing, � (�) is a single-valued, continuous,
15Note that equation (9) is valid even if (i) there is ex ante heterogeneity in the utility function, i.e., U i (c; n) 6=

U j (c; n) for some i 6= j in [0; 1] ; and (ii) there is no disutility from labour, i.e., U (c; n1) = U (c; n2) for all n1 6= n2
in [0; 1] and for all c � 0:
16 If the income tax function is linear, i.e., � 0 (y) = b� for all y � 0; then the steady-state value of k is uniquely

determined by (1� b�) r (k) = �: In this case, only those consumers with the lowest rate of time preference (i.e., the
most patient consumers) will hold a strictly positive amount of assets. All other consumers will either have zero
wealth (if they are not allowed to borrow) or exhaust the borrowing limit (if an ad hoc borrowing constraint is in
place) as in the model of Becker (1980). By the same token, if we introduce another asset that o¤ers a tax-free
return, then only the most patient consumers will hold a strictly positive amount of this asset. Sarte (1997) shows
that equation (9) plays a key role in obtaining a nondegenerate steady-state wealth distribution when consumers
have di¤erent rates of time preference. The implications of the intertemporal smoothing e¤ect, however, is less
mentioned in existing studies.
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strictly increasing function. Using (9) and the de�nition of pre-tax income, we can write

y (k; �) � �

�
1� �

r (k)

�
= w (k) "n (k; �; ") + r (k) a (k; �; ") : (13)

Integrating both sides of (13) across all types of consumers yields

Y (k) �
Z �

�
�

�
1� �

r (k)

�
dH1 (�) = [f (k)� �k]N (k) ; (14)

where H1 (�) is the marginal distribution of �; N (k) is the aggregate labour supply, de�ned as

N (k) �
Z �

�

Z "

"
"n (k; �; ") dH (�; ") ;

and f (k) � F (k; 1) is the reduced-form production function. Equation (14) is essentially an

accounting identity which states that the sum of all individuals� income equals national income

(aggregate output minus depreciation of capital). We will refer to Y (�) as the national income

function. A unique, non-trivial steady state exists if equation (14) has a single, strictly positive

solution. The rest of this section is devoted to establishing the existence of such a solution.

The �rst step is to specify the range of plausible values of k: Since � (�) is only de�ned on [0; � ] ;

equations (13) and (14) are satis�ed only if

� � 1� �

r (k)
� 0;

for all � 2
�
�; �
�
: In other words, any k that solves (14) must satisfy

�

1� � � r (k) � �:

To ensure that this range is nonempty, it is necessary to have � > (1� �) �: By the strict concavity

of f (�) and the Inada conditions on the production function, there exists a unique pair of values

kmax > kmin > 0 such that

r (kmax) � f 0 (kmax)� � = � and r (kmin) =
�

1� � : (15)

Thus, any solution of equation (14) must be contained within the interval [kmin; kmax] :
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Y(k)

kmax
k

kmin

Γ(k) N(k)

k*

Figure 1a

Y(k)

kmax
k

kmin

Γ(k) Ñ(k)

Γ(k) N(k)

Figure 1b

Lemma 1 provides a set of necessary and su¢ cient conditions under which a unique non-trivial

steady state exists in the baseline model. All proofs can be found in the Appendix. A graphical

illustration of the unique steady state is shown in Figure 1a.17

Lemma 1 Suppose Assumptions A1-A4 and � > (1� �) � are satis�ed. Then a unique steady

state with capital-labour ratio k� 2 (kmin; kmax) exists if and only if

N (kmax) [f (kmax)� �kmax] >
Z �

�
�

�
1� �

�

�
dH1 (�) ; (16)

and

N (kmin) [f (kmin)� �kmin] <
Z �

�
�

�
1� �

�
(1� �)

�
dH1 (�) : (17)

3 Heterogeneity in Labour Productivity

We now turn to the main subject of this paper, which is the economic consequences of greater

consumer heterogeneity. In the current section, we focus on the e¤ects of labour productivity

heterogeneity. The e¤ects of time preference heterogeneity will be examined in Section 4. In both

sections, we assume that " and � are statistically independent in the population so that H (�; ") =

H1 (�)H2 (") for all (�; ") : We then compare two economies that have the same fundamentals

except for one of the marginal distributions.

17The inequalities in (16) and (17) are technical conditions which ensure that the two curves in Figure 1a cross at
least once within (kmin; kmax) : The function � (�) in Figures 1a and 1b is de�ned as � (k) � f (k)� �k.
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Two criteria will be used to compare di¤erent marginal distributions. The �rst one is the

Lorenz dominance criterion (also known as Lorenz order or convex order), which is commonly

used in studies of risk and inequality. Let Q (�) and eQ (�) be two distribution functions de�ned on
the same support in R+ and have the same mean. Then eQ (�) is said to be �more unequal�than
Q (�) under the Lorenz dominance criterion if

Z x

0

eQ (z) dz � Z x

0
Q (z) dz; for all x � 0: (18)

The �more unequal�distribution eQ (�) is also called a mean-preserving spread of Q (�) : It is well-
known that (18) is satis�ed if and only if

Z 1

0
� (z) d eQ (z) � Z 1

0
� (z) dQ (z)

for any convex function � : R+ ! R; provided that the integrals exist. Intuitively, a �more unequal�

distribution of consumer characteristic is one that exhibits greater cross-sectional variations, and

thus represents a larger extent of consumer heterogeneity.

Another criterion that we use is the starshaped order. Recall that a function � : R+ ! R is

starshaped if � (0) � 0 and � (z) =z is non-decreasing in z: Then eQ (�) is said to be �more unequal�
than Q (�) according to the starshaped order if

Z 1

0
� (z) d eQ (z) � Z 1

0
� (z) dQ (z) (19)

for all bounded, continuous and starshaped function �:18 The condition in (19) can be equivalently

stated as19 Z 1

x
zd eQ (z) � Z 1

x
zdQ (z) ; for all x � 0: (20)

If Q (�) and eQ (�) have the same mean (or aggregate), i.e., R10 zd eQ (z) = R1
0 zdQ (z) � S, then

(20) can be equivalently stated as

R1
x zd eQ (z)R1
0 zd eQ (z) �

R1
x zdQ (z)R1
0 zdQ (z)

; for all x � 0:

The expression on the right side of this inequality gives the fraction of the aggregate S that

is concentrated in the interval [x;1) under Q (�) : The expression on the left can be similarly
18For more information on this type of ordering, see Shaked and Shanthikumar (2007, Section 4.A.6).
19For a formal proof of this statement, see Lemma A1 in the Appendix
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interpreted. Thus, a mean-preserving but �more unequal�distribution under the starshaped order

is one that is more concentrated on the top end of the support. The relation between these two

types of order is as follows: If Q (�) and eQ (�) have the same mean and satisfy (20), then eQ (�) is
also �more unequal� than Q (�) under the Lorenz order. But the converse of this is not true in

general. Thus, the starshaped order is stronger than the Lorenz order. The rationale for using this

stronger order will be explained below.

Consider two economies that have the same size of population, utility function u (�) ; production

technology F (�), progressive tax schedule � (�) and distribution of time preference H1 (�) de�ned

on
�
�; �
�
:20 The only di¤erence between them lies in the marginal distribution of labour produc-

tivity, which are denoted by H2 (") and eH2 (") : Both of them are de�ned on ["; "] and satisfy the

assumption stated below. The second part of Assumption A5 ensures that a unique non-trivial

steady state exists in both economies.

Assumption A5 (i) The average value of " is identical under H2 (�) and eH2 (�). (ii) Conditions
(16) and (17) are satis�ed in both economies.

Notice that when k is held constant, changing the distribution of " will have no e¤ect on the

individual-level variables de�ned by (9)-(12). Instead, changing this distribution will only a¤ect

the composition of aggregate labour supply. In other words, it will a¤ect the solution of (14) but

only through the function N (�) :

Let N (�) be the aggregate labour supply function de�ned under H2 (�) ; i.e.,

N (k) �
Z �

�

Z "

"
"n (k; �; ") dH2 (") dH1 (�) :

Similarly, de�ne eN (�) using eH2 (�) : From Figure 1b, it is evident that if N (k) � eN (k) for all
k 2 (kmin; kmax) ; then the economy with H2 (�) will have a higher steady-state capital-labour

ratio than the one with eH2 (�) : The opposite is true if the ordering of N (�) and eN (�) is reversed.
Proposition 3 provides a su¢ cient condition under which N (k) � eN (k) for all k 2 (kmin; kmax).
This proposition is built upon the following intermediate result.

Lemma 2 Suppose Assumptions A1-A4 and � > (1� �) � are satis�ed. Then for any k 2

(kmin; kmax) and � 2
�
�; �
�
; n (k; �; ") is a non-decreasing function in ": If, in addition, n (k; �; ")

is an interior solution, then it is strictly increasing in ":

20This implies that both economies have the same range of plausible values of steady-state capital-labour ratio,
[kmin; kmax] ; as de�ned in (15).
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The intuition behind this result is simple: more productive workers have a higher opportunity

cost of leisure, hence they choose to work more than less productive workers. This result holds

whenever (i) labour income and interest income are taxed jointly, so that the marginal tax rate on

these incomes are always the same, and (ii) the MRS between consumption and labour is strictly

increasing in labour. Both assumptions are commonplace in existing studies.

Lemma 2 also implies that a one-percent increase in " can potentially lead to a greater percent-

age increase in e¤ective unit of labour, i.e., "n (k; �; ") : To see this formally, let "2 = (1 + �) "1;

for some � > 0; and suppose n (k; �; "1) and n (k; �; "2) are both interior solutions. Then Lemma 2

implies "2n (k; �; "2) > (1 + �) "1n (k; �; "1) : Intuitively, this means an endogenous labour supply

has the e¤ect of amplifying the variations in labour productivity across consumers.

We now present a su¢ cient condition under which N (k) � eN (k) is true for all k 2 (kmin; kmax).
Proposition 3 Suppose Assumptions A1-A4 and � > (1� �) � are satis�ed. Then N (k) � eN (k)
for all k 2 (kmin; kmax) if

Z "

x
"dH2 (") �

Z "

x
"d eH2 (") ; for all x 2 ["; "] : (21)

Proposition 3 is a direct application of the starshaped order mentioned earlier. To see this,

�rst rewrite N (k) and eN (k) as
N (k) �

Z "

"
"N (k; ") dH2 (") and eN (k) � Z "

"
"N (k; ") d eH2 (") ; (22)

where N (k; ") is the average labour hours among all consumers with the same "; i.e.,

N (k; ") �
Z �

�
n (k; �; ") dH1 (�) :

By Lemma 2, "N (k; ") is a bounded, continuous, starshaped function in " for all k 2 (kmin; kmax) :

Thus, we can interpret N (k) � eN (k) as comparing the expected value of a starshaped function
under two di¤erent distributions, and a su¢ cient condition for this is (21). If "N (k; ") is convex

in " for any given k 2 (kmin; kmax) ; then N (k) � eN (k) if and only if eH2 (�) is �more unequal�
than H2 (�) under the Lorenz dominance criterion. The function "N (k; ") ; however, is not convex

in general.21 For this reason, a stronger criterion (namely the starshaped order) is used in this

comparison.

21The details of this point are available from the authors upon request.
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We now consider the steady-state e¤ects of an increase in labour productivity heterogeneity.

Let k� and ek� be the unique solution of (14) under H2 (�) and eH2 (�) ; respectively. Suppose As-
sumption A5 and (21) are satis�ed so that eH2 (�) is a mean-preserving but more heterogeneous
distribution than H2 (�) under the starshaped order. As explained earlier, this means eH2 (�) has a
higher concentration at the top end of the labour productivity spectrum than H2 (�) : By Propo-

sition 3, the more heterogeneous economy will have a greater aggregate labour supply under any

k 2 (kmin; kmax) : This leads to a lower steady-state value of capital-labour ratio in the more hetero-

geneous economy, i.e., k� � ek� (see Figure 1b). By the intertemporal smoothing e¤ect described in
Section 2.3, a lower capital-labour ratio is associated with a higher pre-tax income and consump-

tion for each consumer. Thus, according to our baseline model, greater heterogeneity in labour

productivity is bene�cial to all consumers. At the aggregate level, a more heterogeneous workforce

is associated with a higher level of aggregate labour input and national income. These results are

summarised in Proposition 4.22

Proposition 4 Suppose Assumptions A1-A5 and � > (1� �) � are satis�ed. Suppose eH2 (�) is
more heterogeneous than H2 (�) according to (21). Then we have

(i) k� � ek�; N (k�) � eN �ek�� and Y (k�) � Y
�ek�� :

(ii) y (k�; �) � y
�ek�; �� and c (k�; �) � c

�ek�; �� for all � 2 ��; �� :
4 Heterogeneity in Time Preference

Comparing to the previous section, the analysis of greater time preference heterogeneity is more

challenging due to two reasons: Firstly, changing the distribution of � will not only shift the

aggregate labour supply function N (�) on the right side of equation (14), but also the national

income function Y (�) on the left. Because of this simultaneous movement, the overall results are

often qualitatively ambiguous. Secondly, it is di¢ cult to determine how n (k; �; ") changes with �

in the presence of income e¤ect on labour supply.23 Without knowing this, we cannot ascertain

qualitatively the e¤ect of greater time preference heterogeneity on N (�) :

Because of these complexities, theoretical results are available only under two additional con-

ditions. In Section 4.1, we assume that individual labour supply is an exogenous constant. As a
22The e¤ects on aggregate capital K � kN (k) and aggregate output N (k) f (k) ; however, are ambiguous due to

the opposing e¤ects of greater heterogeneity on k and N (k) :
23Speci�cally, changes in � will a¤ect individual labour supply in two ways: (i) by changing the after-tax wage rate

through the variable y (k; �) ; and (ii) by distorting the MRS between consumption and labour through the variable
c (k; �) : The latter is what we refer to as the income e¤ect.
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result, aggregate labour input is independent of the distribution of �: This abstraction allows us

to focus on the e¤ects of time preference heterogeneity on Y (�) alone. As we will see below, these

e¤ects are entirely determined by the shape of the marginal tax function � 0 (�). This subsection

thus highlights the role of progressive taxation in determining the impact of greater time preference

heterogeneity. In Section 4.2, we resume the assumption of �exible labour supply but abstract away

from the aforementioned income e¤ect. This is achieved by using the �no-income-e¤ect� utility

function. In this case, the e¤ects of greater time preference heterogeneity are jointly determined

by the shape of the marginal tax function and the shape of the MRS between consumption and

labour. Finally, in Section 4.3 we use numerical examples to illustrate the e¤ects of time preference

heterogeneity in the full version of the baseline model where the income e¤ect is operative.

4.1 Exogenous Labour Model

In this subsection, the consumer�s utility function is given by U (c; n) � u (c) for all c � 0 and n 2

[0; 1] ; where u : R+ ! R is twice continuously di¤erentiable, strictly increasing, strictly concave

and satis�es lim
c!0

u0 (c) =1:24 Let b" > 0 be the average labour productivity in the population, i.e.,
b" � R "" "dH2 ("). Individual and aggregate labour supply are then given by ni;t = 1 for all i and
Nt = b"; respectively. The rest of the economy is the same as in the baseline model.

In any stationary equilibrium, y (k; �) and c (k; �) are again determined by (9) and (10), but

the labour supply conditions in (12) will be simpli�ed to become n (k; �; ") = 1; for all (k; �; ") :

Equation (14) is now given by

Z �

�
�

�
1� �

r (k)

�
dH1 (�) = [f (k)� �k]b": (23)

Note that any solution of (23) will only depend on the mean value of " but not other moment.

Thus, there is no loss of generality in assuming that H2 (") is a degenerate distribution at b". Using
the same line of argument as in the proof of Lemma 1, one can show that a unique solution of (23)

exists if and only if (16) and (17) are satis�ed [with N (kmax) and N (kmin) replaced by b"].
We now compare two economies that are otherwise identical except for the distribution of �,

denoted by H1 (�) and eH1 (�) : Both are de�ned on ��; �� and satisfy Assumption A6. The �rst
part of this assumption states that eH1 (�) is more heterogeneous than H1 (�) under the Lorenz

dominance criterion.
24These assumptions will replace Assumptions A1 and A2 in the baseline model.
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Assumption A6 (i) eH1 (�) is a mean-preserving spread of H1 (�) : (ii) A unique steady state

exists in both economies.

Let Y (�) be the national income function de�ned using H1 (�) and k� be the corresponding

unique solution of (23). Their counterparts under eH1 (�) are denoted by eY (�) and ek�: A more

heterogeneous population is said to be bene�cial (or harmful) to long-term capital accumulation ifek� � k� (or ek� � k�).25 Proposition 5 states the conditions under which this is true in this model.

Proposition 5 Suppose Assumptions A3, A4, A6 and � > (1� �) � are satis�ed.

(i) If the marginal tax function is concave, then Y (k) � eY (k) for all k 2 (kmin; kmax) and a
more heterogeneous population is bene�cial to long-term capital accumulation.

(ii) If the marginal tax function is convex, then Y (k) � eY (k) for all k 2 (kmin; kmax) and a more
heterogeneous population is harmful to long-term capital accumulation.

One interesting special case is to compare an identical-agent (IA) economy, where all consumers

have the same rate of time preference, to a heterogeneous-agent (HA) economy, where consumers

have di¤erent rates of time preference. Proposition 5 then implies that the HA economy will have

a higher (or lower) level of long-run capital accumulation than the IA economy if the marginal

tax function is concave (or convex). To see the intuition behind these results, it is instructive to

compare the distribution of marginal tax rates in these two economies.

Suppose for the moment that H1 (�) is a degenerate distribution at some point b� in ��; �� andeH1 (�) is non-degenerate with mean b�: In the IA economy, all consumers have the same pre-tax

income y (k�;b�) and face the same marginal tax rate � 0 [y (k�;b�)] : Introducing a mean-preserving
spread in time preference will create a dispersion in these variables. In particular, it will lower the

marginal tax rate for those with � greater than b� and raise the marginal tax rate for the others.26
If the marginal tax function is concave, then the average marginal tax rate will be lowered as a

result. More speci�cally, if � 0 (�) is concave, then

� 0 [y (k�;b�)] � 1

1� eH1 (x)
Z �

x
� 0
h
y
�ek�; ��i d eH1 (�) ;

25Since aggregate labour is an exogenous constant, aggregate capital, aggregate output and national income are
all increasing in k. Thus, Proposition 5 is equivalent to saying that a more heterogeneous population is bene�cial
(or harmful) to aggregate output and national income if the marginal tax function is concave (or convex).
26This follows from the fact that y (k; �) is strictly decreasing in � for all k 2 (kmin; kmax) : This property can be

easily shown using the �rst part of (13).
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for all x 2
�
�; �
�
: The expression on the right is the average marginal tax rate faced by those with

� � x in the HA economy. The lower average marginal tax rate then contributes to a higher level

of capital accumulation in the HA economy. Alternatively, if � 0 (�) is convex, then we have

� 0 [y (k�;b�)] � 1eH1 (x)
Z x

�
� 0
h
y
�ek�; ��i d eH1 (�) ;

for all x 2
�
�; �
�
: In this case, consumers in the HA economy face a higher marginal tax rate in

general, which has a harmful impact on capital accumulation.

Our next proposition generalises this comparison to any two HA economies that satisfy Assump-

tion A6. For any q 2 [0; 1] ; de�ne � (q) as the qth quantile ofH1 (�) ; i.e., � (q) � sup f� : H1 (�) � qg :

Similarly, de�ne e� (q) as the qth quantile of eH1 (�) :
Proposition 6 Suppose Assumptions A3, A4, A6 and � > (1� �) � are satis�ed.

(i) If the marginal tax function is concave, then

Z �

�(q)
� 0 [y (k�; �)] dH1 (�) �

Z �

e�(q) � 0
h
y
�ek�; ��i d eH1 (�) ; for all q 2 [0; 1] :

(ii) If the marginal tax function is convex, then

Z �(q)

�
� 0 [y (k�; �)] dH1 (�) �

Z e�(q)
�

� 0
h
y
� ek�; ��i d eH1 (�) ; for all q 2 [0; 1] :

We conclude this subsection by pointing out the relevance of concave marginal tax function in

the existing literature. Two parametric forms of � (�) are typically used in quantitative studies.

The �rst one is the isoelastic form adopted by Guo and Lansing (1998), Li and Sarte (2004) and

Angyridis (2015). This can be expressed as � (y) = �y1+�; where � and � are two strictly positive

parameters. It is straightforward to show that the corresponding marginal tax function is concave

(or convex) when � � 1 (or � � 1): Using U.S. tax returns data, Li and Sarte (2004) estimate

that the value of � was 0.88 in 1985 and 0.75 in 1991. Both imply a strictly concave marginal tax

function. Another commonly used tax function is the one proposed and estimated by Gouveia and

Strauss (1994),

� (y) = a0

h
y �

�
y�a1 + a2

�� 1
a1

i
: (24)

This functional form has been used by Sarte (1997), Conesa and Krueger (2006), Erosa and Kore-

shkova (2007), and Carroll and Young (2011), among others. The second and third-order deriva-
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tives of this function are given by

� 00 (y) = a0a2 (1 + a1) (1 + a2y
a1)

�
�
2+ 1

a1

�
ya1�1;

� 000 (y) =
� 00 (y)

y

�
a1 � 1� (2a1 + 1)

�
a2y

a1

1 + a2ya1

��
: (25)

In all existing applications, the parameters a0, a1 and a2 are taken to be strictly positive which

ensure that � 00 (�) > 0: Gouveia and Strauss (1994) report estimates of a1 ranging from 0.726 to

0.938 based on U.S. data. From (25), it is obvious that these values imply � 000 (�) < 0; i.e., a strictly

concave marginal tax function.

4.2 Endogenous Labour Without Income E¤ect

The consumer�s utility function is now given by U (c; n) = u [c� v (n)] ; where u : R+ ! R and

v : [0; 1] ! R+ are both twice continuously di¤erentiable and strictly increasing. The former is

also strictly concave and satis�es lim
x!0

u0 (x) = 1; while the latter is strictly convex. The rest of

the economy is the same as in Section 2.

In any stationary equilibrium, equations (9)-(11) will remain valid and the optimality condition

for labour supply will be given by

v0 [n (k; �; ")]� w (k)

r (k)
"�

8>>>><>>>>:
� 0 if n (k; �; ") = 0;

= 0 if n (k; �; ") 2 (0; 1) ;

� 0 if n (k; �; ") = 1:

(26)

The two corner solutions can be ruled out by introducing some additional assumptions. The details

are shown in Lemma 7.

Lemma 7 Suppose Assumption A4 is satis�ed. Then the following results hold for all k 2

(kmin; kmax) and for all (�; ") 2
�
�; �
�
� ["; "] :

(i) If lim
n!0

v0 (n) = 0; then n (k; �; ") > 0:

(ii) If v0 (1) > w (kmax) "; then n (k; �; ") < 1:

The condition lim
n!0

v0 (n) = 0 means that the marginal cost of labour is negligible when n is

close to zero. But the marginal bene�t of working is always strictly positive when n > 0; hence

all consumers will choose to have n > 0: On the other hand, if v0 (1) > w (kmax) " holds, then the
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marginal cost of working at n = 1 will outweigh its marginal bene�t under all possible steady-state

wage rate and for all types of consumers. Thus, no one will �nd it optimal to choose n = 1:

Similar to the previous subsection, let H1 (�) and eH1 (�) be two distinct distributions of � that
satisfy Assumption A6. When labour supply is �exible, changes in time preference heterogeneity

will a¤ect both the national income function Y (�) and the aggregate labour supply function N (�) :

The e¤ects on Y (�) are the same as in Proposition 5.27 The e¤ects on N (�) are examined below.28

Proposition 8 Suppose Assumptions A3, A4, A6, and � > (1� �) � are satis�ed. Then the

following results hold for any k 2 (kmin; kmax) and for any " 2 ["; "] :

(i) If v0 (�) is concave and satis�es v0 (1) > w (kmax) ", then n (k; �; ") is convex in � and N (k) �eN (k) :
(ii) If v0 (�) is convex and satis�es lim

n!0
v0 (n), then n (k; �; ") is concave in � and N (k) � eN (k) :

To explain these results, �rst consider the case when n is an interior solution. Such a solution

is completely characterised by the �rst-order condition v0 (n) = $, where $ denotes the after-tax

wage rate. According to (26), $ is determined by the steady-state capital-labour ratio and the

consumer�s own characteristics. For now we will ignore these details and express the individual

labour supply function simply as n ($) : An increasing v0 (�) means that the marginal cost of labour

is increasing. Thus, a consumer will choose to work longer hours if and only if he is compensated

by a higher wage rate, i.e., n ($2) � n ($1) i¤$2 � $1: A concave v0 (�) means that the marginal

cost of labour is increasing in n but at a declining rate. Thus, when presented the same (absolute)

increase in real wage, a high-wage earner will increase his labour supply more than a low-wage

earner. Formally, this means for any � > 0;

n ($2 +�)� n ($2) � n ($1 +�)� n ($1) ; whenever $2 � $1: (27)

Equation (27) is equivalent to saying that individual labour supply is a convex function in $:

Conversely, if v0 (�) is convex, then the marginal cost of labour is increasing in n at an increasing
27 In particular, for any k 2 (kmin; kmax) ; Y (k) is less (or greater) than eY (k) if the marginal tax function is concave

(or convex). This result is independent of the assumptions on labour supply.
28For the speci�c funcitonal form in (3), we can write v0 (n) = A (1 + �)n�: This function is strictly concave (or

strictly convex) if and only if � < 1 or (� > 1): It also satis�es the condition lim
n!0

v0 (n) = 0 whenever � > 0: Hence,

the conditions in the second part of Proposition 8 are satis�ed if � > 1: If, in addition, we use a Cobb-Douglas
production function so that f (k) = k� for some � 2 (0; 1) ; then the conditions in the �rst part of Proposition 8 are
satis�ed if � < 1 and A (1 + �) > (1� �)

�
�
�+�

� �
1��

": A less-than-unity value of � seems to be more common in the

existing literature. For instance, Greenwood et al. (1988), Jaimovich and Rebelo (2009) and Correia (2010) have
used values ranging from 0.4 to 0.8.
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Table 1: Main Results of Section 4.2

� 0 (�) v0 (�) Y (k�) k�

concave concave " Ambiguous

convex convex # Ambiguous

convex concave Ambiguous #

concave convex Ambiguous "

rate. In this case, a high-wage earner will be more reluctant to increase his labour supply as $

increases. The inequality in (27) is now reversed which means n ($) is a concave function. When

comparing across consumers with di¤erent rate of time preference, it su¢ ce to note that the after-

tax wage rate in (26) is linearly increasing in �: Thus, an increasing concave v0 (�) will imply that

n (k; �; ") is increasing and convex in �: A mean-preserving spread in � then leads to an increase in

the average value of "n (k; �; ") across all types of consumers, i.e., N (k) � eN (k) for all plausible
value of k:

The above arguments can be (partially) extended to allow for corner solutions in n: Let bn ($)
be the solution of the unconstrained problem, i.e., v0 [bn ($)] = $ for all $: If bn ($) is convex, then
the composite function max fbn ($) ; 0g is also convex but min fbn ($) ; 1g is not. Thus, the �rst
part of Proposition 8 is valid so long as the optimal labour supply is strictly less than one. This

can be ensured by imposing the condition v0 (1) > w (kmax) ": Likewise, if bn ($) is concave, then
min fbn ($) ; 1g is also a concave function but max fbn ($) ; 0g is not. Thus, we have included the
condition lim

n!0
v0 (n) = 0 in the second part of Proposition 8 to ensure that n > 0:

Based on the shape of � 0 (�) and v0 (�) ; we can identify four possible scenarios. Table 1 sum-

marises the overall e¤ects of greater time preference heterogeneity in each of these cases. These

can be easily seen with the aid of Figure 1a, hence the proof is omitted. For instance, when both

� 0 (�) and v0 (�) are concave, an increase in time preference heterogeneity will shift both the national

income function and the aggregate labour supply function up, according to Propositions 5 and 8.

This will lead to an unambiguous increase in national income, but an ambiguous e¤ect on the

capital-labour ratio. The latter is the result of two opposing forces: on one hand, an increase

in time preference heterogeneity will lower the average marginal tax rate on asset return which

encourages capital accumulation; on the other hand, such an increase will lead to an expansion

in aggregate labour supply and suppress the capital-labour ratio. Which e¤ect dominates is a
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quantitative question. The other three cases in Table 1 can be interpreted in a similar fashion.

4.3 Numerical Examples

In the previous two sections, we have identi�ed two channels through which greater time pref-

erence heterogeneity can a¤ect the economy. The �rst one involves changing the cross-sectional

distribution of marginal tax rates and the national income function, while the second one involves

a composition e¤ect on aggregate labour supply. In this section, we will use numerical examples to

demonstrate these e¤ects in the full version of the baseline model. There are two reasons why we

resort to quantitative analysis here. Firstly, the presence of income e¤ect on labour supply poses a

serious challenge in characterising the shape of n (k; �; ") as a function of �: As a result, we cannot

ascertain qualitatively the e¤ects of greater time preference heterogeneity on N (�) as in Proposi-

tion 8. Secondly, as Table 1 suggests, the overall e¤ects of greater time preference heterogeneity

are often qualitatively ambiguous: The numerical examples presented below are intended to throw

some light on these issues.

Consider a parameterised version of the baseline model with the following speci�cs: One period

in the model is a year. The consumer�s period utility function is given by

U (c; n) = ln c�A n1+1= 

1 + 1= 
;

where A is a positive-valued parameter and  is the Frisch elasticity of labour supply. The value

of A is calibrated so that, on average, consumers spend about one-third of their time working in

the steady state. The resulting value of A is 47.28. The Frisch elasticity of labour supply is set to

0:40; based on the estimates by MaCurdy (1981) and Altonji (1986). The production function is

assumed to take the Cobb-Douglas form, i.e., F (K;N) = K�N1��; with � = 0:40: We choose the

value of � so that the steady-state capital-output ratio matches the value observed in the United

States over the period 1947-2016, which is 2.367.29 The required value of � is 5:3%: The progressive

tax function is assumed to take the form in (24), with a0 = 0:258 and a1 = 0:768 as reported by

Gouveia and Strauss (1994).30 The value of a2 is determined in two steps: First, we assume that

government spending G accounts for 20.7% of aggregate output F (K;N) in the steady state. This

value is based on the share of government consumption expenditures in US GDP over the period

29We use the sum of private �xed assets and end-of-year stock of private inventories as our measure of aggregate
capital stock. Data on private �xed assets and private inventories are obtained from the National Income and
Product Accounts (NIPA).
30The same value of a0 and a1 are also used by Conesa and Krueger (2006) and Carroll and Young (2011).
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Table 2 Targeted Statistics

Ratio of capital to output 2.367

Ratio of gov�t spending to output 0.207

Ratio of national income to output 0.869

Average labour hours 0.333

Percentile of Mean income

Income Distribution (relative to lowest quintile)

0 �19.9 1.0

20 �39.9 2.0

40 �59.9 3.2

60 �79.9 5.5

80 �89.9 8.2

90 �100 28.5

1947-2016. We then solve the government�s budget constraint in (8) for a2:

In terms of consumer characteristics, we assume that labour productivity is uniformly dis-

tributed across consumers with " = 1 and " = 100: The distribution of �; on the other hand, is

calibrated so that the distribution of pre-tax income in the benchmark numerical example matches

certain features of its real-world counterpart.31 Speci�cally, we divide the entire population into

M income groups. All consumers within group j have the same level of pre-tax income yj ; for

j 2 f1; 2; :::;Mg : These incomes are ranked according to y1 < ::: < yM : The population share of

income group j is denoted by �j 2 (0; 1) ; with
PM

j=1 �j = 1: Since there is an one-to-one mapping

between pre-tax income and rate of time preference, all members within the same income group

have the same � which can be determined by yj = y
�
k�; �j

�
; for all j: To construct a realistic

income distribution, we �rst compute the relative income $j � yj=y1 for six income groups based

on the 2016 Survey of Consumer Finance (SCF) data reported in Bricker et al. (2017) Table 1.32

These income groups include the bottom four quintiles, the 80-89.9 percentile and the top 10% of

31Since the pre-tax income function y (k; �) is independent of "; the cross-sectional distribution of labour produc-
tivity is irrelevant here.
32Speci�cally, we use the mean income data in 2016 to compute the relative incomes f$jgMj=1 : We have also

computed these values using data from �ve earlier rounds of SCF (2001, 2004, 2007, 2010 and 2013) as shown in
Bricker et al. (2012) and Bricker et al. (2017). There are very little variations in these values, except for the top
income group ($6). The numerical results are largely the same when we calibrate the model using these earlier data.
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Table 3 Benchmark Parameter Values

A Preference parameter 47.28

 Frisch elasticity of labour supply 0.400

� Share of capital income in aggregate output 0.400

� Depreciation rate of capital 0.053

a0 Parameter in the progressive tax function 0.258

a1 Parameter in the progressive tax function 0.768

a2 Parameter in the progressive tax function 0.402

" Minimum value of labour productivity 1

" Maximum value of labour productivity 100

f�jg Population share of income groups [0:20; 0:20:0:20;

0:20; 0:10; 0:10]�
�j
	

Rate of time preference [0:0883; 0:0861; 0:0853;

0:0848; 0:0846; 0:0844]

Table 4 Results of Numerical Examples

Benchmark % Changes from Benchmark

� = 0 � = 0:05 � = 0:10 � = 0:20 � = �0:10

k� 4.204 0.02% 0.05% 0.09% -0.04%

N (k�) 19.475 -0.37% -0.64% -1.00% 1.57%

Y (k�) 30.058 -0.37% -0.62% -0.97% 1.55%

k�N (k�) 81.873 -0.35% -0.59% -0.91% 1.53%

(k�)� �N (k�) 34.589 -0.36% -0.62% -0.97% 1.55%

G� 7.160 -0.42% -0.72% -1.12% 1.76%
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Figure 2

the income distribution.33 We then compute the value of y1 so that the ratio of national income

Y (k) to aggregate output F (K;N) is 0.869 in the steady state. This matches the value ob-

served in US data over the period 1947-2016.34 Once y1 is known, we can solve for
�
�j
	M
j=1

using

yj = $jy1 = y
�
k�; �j

�
; for all j: Table 2 summarises all the targeted statistics mentioned above

and Table 3 shows the benchmark parameter values. The resulting value of six key variables,

namely the capital-labour ratio k�; aggregate labour input N (k�) ; national income Y (k�) ; aggre-

gate capital k�N (k�) ; aggregate output (k�)� �N (k�) and government spending G�, are reported

in Table 4.35

The next step is to construct some alternative distributions of � with di¤erent degrees of time

preference heterogeneity. Intuitively, a mean-preserving spread of the benchmark distribution can

be obtained by �hollowing out�the middle section and relocating the mass to the upper and lower

33Hence, we set M = 6; �j = 0:20 for j 2 f1; :::; 4g and �5 = �6 = 0:10:
34We use net national product as our measure of national income in this calculation. Data on net national product

are obtained from the NIPA.
35The MATLAB codes for generating these results are available from the authors�personal website.
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ends. To put this in practice, �rst choose a value � from the range [0; �3] : Then de�ne a new set

of weights fe�jg on ��j	 as follows: e�3 = �3 � �; e�1 = �1 + �; e�6 = �6 + � � �; and e�j = �j for

j 2 f2; 4; 5g : The value of � is chosen so that the mean value of � is unchanged, i.e.,

6X
j=1

e�j�j = 6X
j=1

�j�j :

Using this procedure, we construct four alternative distributions of � with � 2 f0:05; 0:10; 0:20;�0:10g :

We then solve the baseline model under each of these distributions, while keeping all other pa-

rameters in Table 3 unchanged. In general, a larger value of � represents a higher level of time

preference heterogeneity. Thus, the distribution with � = �0:10 is actually less diverse than the

benchmark distribution.

Figure 2 shows the national income function and aggregate labour supply function obtained

under various values of �, including the benchmark case (� = 0).36 Two results are immediate from

these diagrams. Firstly, increasing the cross-sectional dispersion of � causes the national income

function to shift upward. This pattern is consistent with the theoretical predictions in Proposition

5. Secondly, an increase in time preference heterogeneity will cause the aggregate labour supply

function to shift down. In a robustness check below, we �nd the same pattern under two di¤erent

values of  ; namely 0.2 and 0.6. Thus, at least in this regard, the calibrated model behaves similarly

as the �no-income-e¤ect�model considered in Section 4.2 with a convex v0 (�) : The key variables

obtained under these alternative distributions are shown in Table 4. Overall, these results suggest

that increasing the cross-sectional dispersion in consumer�s time preference has only a mild positive

e¤ect on k�; but a more signi�cant and negative impact on aggregate labour supply. The changes

in other aggregate variables are largely driven by the changes in N (k�) :We can further divide the

e¤ects on N (k�) into (i) a composition e¤ect brought by the changes in the composition of the

workforce [i.e., changes in f�1; :::; �6g], and (ii) a general equilibrium e¤ect brought by the changes

in k� (which a¤ect the level of individual labour supply). The contribution of these two e¤ects

are shown in Table 5. These results show that the negative impact of greater time preference on

N (k�) is due to a dominating composition e¤ect.

36The curves for � = 0:05 are almost indiscernible from those obtained from the benchmark case, hence they are
omitted from these diagrams.
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Table 5 Two E¤ects on Aggregate Labour Supply

% Changes from Benchmark

� = 0:05 � = 0:10 � = 0:20 � = �0:10

Composition e¤ect -1.46% -2.92% -5.83% 2.92%

G.E. e¤ect 0.94% 1.78% 3.22% -2.53%

Changing the Elasticity of Labour Supply Table 6 reports the results obtained under two

alternative values of  ; which are 0.20 and 0.60. These results are both qualitatively and quanti-

tatively similar to those reported in Table 4. This shows that our results are robust to changes in

this parameter value.

Revenue-Equivalent Comparision We have also repeated the same exercise under the revenue-

equivalent restriction. As before, we solve for the steady state under the alternative distributions

of � (and  = 0:40). But this time, we re-calibrate the value of a2 in each case so that (i) the

government budget constraint is satis�ed, and (ii) the value of G� is the same as in the benchmark

scenario. The results are shown in Table 7. Similar to those reported in Table 4 of the revised

paper, an increase in time preference heterogeneity will have a mild positive impact on k� and a

negative impact on aggregate labour supply N (k�) : This negative e¤ect, however, is smaller under

the revenue-equivalent restriction. This can be explained as follows: When there is an increase in

time preference heterogeneity (say, from the benchmark case � = 0 to � = 0:05), the value of a2

needs to be increased in order to maintain the same level of tax revenue. An increase in a2 will

raise both the level of � (y) and the marginal tax rate � 0 (y) for all y > 0: Formally, this means

@� (y; a2)

@a2
> 0 and

@

@a2

�
@� (y; a2)

@y

�
> 0; for all y > 0:

This will in turn lower the value of pre-tax income y (k; �) and consumption c (k; �) for all (k; �) :

The reduced consumption will then trigger a negative income e¤ect on labour supply. To see this,

�rst note that under the utility function

U (c; n) = ln c�A n1+1= 

1 + 1= 
;
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Table 6 Changing the Elasticity of Labour Supply

When  = 0:20

Benchmark % Changes from Benchmark

� = 0 � = 0:05 � = 0:10 � = 0:20 � = �0:10

k� 4.204 0.02% 0.05% 0.09% -0.04%

N (k�) 18.254 -0.30% -0.53% -0.87% 1.18%

Y (k�) 28.173 -0.29% -0.52% -0.84% 1.17%

k�N (k�) 76.739 -0.28% -0.48% -0.78% 1.14%

(k�)� �N (k�) 32.420 -0.29% -0.51% -0.83% 1.16%

G� 6.711 -0.34% -0.60% -0.97% 1.34%

When  = 0:60

k� 4.204 0.02% 0.05% 0.09% -0.04%

N (k�) 20.526 -0.23% -0.35% -0.45% 1.27%

Y (k�) 31.680 -0.22% -0.34% -0.42% 1.26%

k�N (k�) 86.290 -0.20% -0.30% -0.36% 1.23%

(k�)� �N (k�) 36.455 -0.22% -0.33% -0.41% 1.25%

G� 7.546 -0.26% -0.40% -0.52% 1.44%
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Table 7 Additional Numerical Results (holding G� constant)

Benchmark % Changes from Benchmark

� = 0 � = 0:05 � = 0:10 � = 0:20 � = �0:10

k� 4.204 0.02% 0.04% 0.08% -0.04%

N (k�) 19.475 -0.06% -0.11% -0.20% 0.21%

Y (k�) 30.058 -0.06% -0.10% -0.17% 0.20%

k�N (k�) 81.873 -0.04% -0.07% -0.12% 0.17%

(k�)� �N (k�) 34.589 -0.05% -0.10% -0.17% 0.20%

a2 0.402 0.405 0.408 0.412 0.391

the optimality condition for labour supply is given by

A [n (k; �; ")]
1
 c (k; �) =

w (k)

r (k)
�"

) n (k; �; ") =

�
w (k)

r (k)

�"

Ac (k; �)

� 
:

Thus, a decline in c (k; �) will induce the workers to worker longer hours. This positive e¤ect on

labour supply will then (partially) counteract the negative composition e¤ect reported in Table

5. Hence, the overall impact on aggregate labour supply is small under the revenue-equivalent

restriction.

5 Conclusion

In this paper we analyse the long-run economic e¤ects of diversity in a deterministic neoclassical

model with ex ante heterogeneous consumers, �exible labour supply and progressive taxation.

Our results highlight two important channels through which consumer heterogeneity can a¤ect the

steady state. Firstly, changing either the distribution of labour productivity or time preference will

a¤ect the composition of aggregate labour supply. The exact nature of this e¤ect is determined

by the shape of the individual labour supply function. Secondly, changing the distribution of time

preference will also have an impact on the cross-sectional distribution of marginal tax rate. We

show that the curvature of the marginal tax function holds the key in determining this e¤ect. In

this analysis, we assume that time preference and labour productivity are independent of each

other. This assumption is adopted mainly for analytical convenience. As pointed out by Carroll
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and Young (2009), such a model may fail to capture the observed patterns of correlation between

di¤erent types of income. One possible direction of future research is to analyse the e¤ects of

diversity without imposing the independence assumption. The model considered here also does

not take into account the political institutions that contribute to the progressive tax system or

other redistributive policies. As discussed in Alesina and La Ferrara (2005), these institutions play

a crucial role in resolving the con�icting interests within a diverse population, and this will in

turn determine the economic e¤ects of diversity. One exciting and important direction of future

research is to introduce some political elements (such as a voting mechanism) into our baseline

model and analyse the e¤ects of diversity in a politico-economic equilibrium.
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Appendix

Proof of Lemma 1

De�ne � (k) � f (k)� �k over the interval [kmin; kmax] : Then equation (14) can be more succinctly

expressed as Y (k) = � (k)N (k) : We will examine the properties of each of these functions,

starting with � (�) : Since f (�) is strictly increasing and strictly concave, there exists a unique

value kGR > 0 such that �0 (k) ? 0 if and only if k 7 kGR: Since �0 (kmax) = f 0 (kmax)� � = � > 0;

we have kmax < kGR which means � (�) is strictly increasing over [kmin; kmax] with � (kmin) > 0:

Next, consider the national income function Y (�) : Since � (�) is strictly increasing, Y (�) is strictly

decreasing on (kmin; kmax) with

Y (kmax) =

Z �

�
�

�
1� �

�

�
dH1 (�) > 0;

and

lim
k!kmin

Y (k) =

Z �

�
�

�
1� �

�
(1� �)

�
dH1 (�) : (28)

Equation (28) follows from the facts that � (�) is a continuous function and r (k) approaches

�= (1� �) as k tends to kmin: Note that the limiting condition lim
y!1

� 0 (y) = � implies

lim
�!�

�

�
1� �

�
(1� �)

�
= +1:

Hence, the integral in (28) can be either convergent or divergent. For instance, if H1 (�) has a

positive mass at �; then Y (kmin) is in�nitely large and (17) is automatically satis�ed.

Finally, we will show that the aggregate labour supply function N (�) is non-decreasing. It

su¢ ce to show that n (k; �; ") is non-decreasing in k; for all (�; ") : Fix (�; ") and suppose the

contrary that 1 � n (k2; �; ") > n (k1; �; ") � 0 for some k1 > k2 in [kmin; kmax] : Since c (k; �) is

strictly decreasing in k, we have c (k1; �) < c (k2; �) : By Assumption A2, 	(c; n) is non-decreasing

in c and strictly increasing in n: Hence, we have

w (k1)

r (k1)
"� � 	 [c (k1; �) ; n (k1; �; ")]

< 	 [c (k2; �) ; n (k2; �; ")]

� w (k2)

r (k2)
"� <

w (k1)

r (k1)
"�:

The third inequality follows from (12). The last step uses the facts that w (�) is strictly increasing
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and r (�) is strictly decreasing. Since there is a contradiction, n (k; �; ") must be non-decreasing in

k for all possible values of (�; ") :

The above results implies that [Y (k)� � (k)N (k)] is strictly decreasing over the interval

(kmin; kmax) : If (16) and (17) are satis�ed, then there exists a unique value k� within this range

that solves (14). Conversely, if this equation has a unique interior solution, then the two curves

in Figure 1a must cross once over the interval (kmin; kmax), which implies (16) and (17). This

completes the proof of Lemma 1.

Proof of Lemma 2

Fix k 2 (kmin; kmax) and � 2
�
�; �
�
: Suppose the contrary that 1 � n (k; �; "2) > n (k; �; "1) � 0 for

some "1 > "2 in ["; "] : Since 	(c; n) is strictly increasing in n, we have

w (k)

r (k)
�"1 � 	 [c (k; �) ; n (k; �; "1)] < 	 [c (k; �) ; n (k; �; "2)] �

w (k)

r (k)
�"2

<
w (k)

r (k)
�"1;

which is a contradiction. Hence, n (k; �; ") must be non-decreasing in ": If n (k; �; ") is an interior

solution, then it is completely characterised by

	 [c (k; �) ; n (k; �; ")] =
w (k)

r (k)
�":

By Assumptions A1-A2 and the implicit function theorem, n (k; �; ") is continuously di¤erentiable

in ". Straightforward di¤erentiation then yields

@	

@n

@n (k; �; ")

@"
=
w (k)

r (k)
� > 0:

Since @	=@n > 0; the desired result follows. This completes the proof of Lemma 2.

Proof of Proposition 3

We �rst establish an intermediate result.37

37The proof of Lemma A1 has been outlined in Shaked and Shanthikumar (2007, p.204-205). We include a more
detailed proof here for the sake of clarity and completeness.
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Lemma A1 For any bounded, non-decreasing function g (�) de�ned on ["; "] ;

Z "

"
"g (") dH2 (") �

Z "

"
"g (") d eH2 (") ; (29)

if and only if (21) holds.

Proof of Lemma A1 The proof of the �only if�part is obvious. Suppose (29) is valid for all

bounded, non-decreasing functions de�ned on ["; "] : For any x 2 ["; "], de�ne the indicator function

I (";x) which equals one if " � x and zero otherwise. Since I (";x) is bounded and non-decreasing,

it follows from (29) that

Z "

"
"I (";x) dH2 (") =

Z "

x
"dH2 (") �

Z "

"
"I (";x) d eH2 (") = Z "

x
"d eH2 (") ;

for any x 2 ["; "] : Next, consider the �if�part. Let g (�) be an arbitrary bounded, non-decreasing

function de�ned on ["; "] : Without loss of generality, we can assume g (") = 0: For any positive

integer m � 1; partition the interval ["; "] into 2m subintervals of equal length. The end-points of

these intervals are given by

e"i;m = "+
i� 1
2m

("� ") ; for i = 1; :::; 2m + 1:

Next, de�ne a step function �m (�) so that �m (") = g (e"i;m) if " 2 [e"i;m;e"i+1;m) ; and �m (") = g (")

if " = ": This function can also be written as

�m (") =
m2mX
i=1

�i;mI (";e"i;m) ; (30)

where I (";e"i;m) = 1 if " � e"i;m and zero otherwise. The coe¢ cient f�i;mg are given by

�i;m =

8><>: g (") for i = 1;

g (e"i+1;m)� g (e"i;m) for i = 2; :::; 2m:

Since g (�) is non-decreasing and non-negative, we have �i;m � 0 for all i: Hence, �m (") � 0 for all

" 2 ["; "] :

By repeating the above procedure, we can construct a sequence of non-negative functions

f�m (�)g that converges pointwise to g (�) :We now show that f�m (�)g is a monotonically increasing

sequence of functions, i.e., �m (") � �m+1 (") for any " 2 ["; "] : Fix " 2 ["; "] : Then there are
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only two possible scenarios: either " < (e"i;m + e"i+1;m) =2 or " � (e"i;m + e"i+1;m) =2 for some i 2
f1; :::; 2mg : In the �rst scenario, we have �m+1 (") = �m (") : In the second scenario,

�m+1 (") = �m

�e"i;m + e"i+1;m
2

�
� g (e"i;m) = �m (") :

Hence, f�m (�)g is a monotonically increasing sequence of non-negative functions. By the monotone

convergence theorem, we can get

lim
m!1

Z "

"
"�m (") dH2 (") =

Z "

"
"g (") dH2 (") ; (31)

lim
m!1

Z "

"
"�m (") d eH2 (") = Z "

"
"g (") d eH2 (") : (32)

Note that for each m; we have

Z "

"
"�m (") dH2 (") =

m2mX
i=1

�i;m

Z "

"
"I (";e"i;m) dH2 (") = m2mX

i=1

�i;m

Z "

e"i;m "dH2 (") ;

where the �rst equality follows from (30). Suppose (21) is true for all x 2 ["; "] : Since �i;m � 0 for

all i; we have Z "

"
"�m (") dH2 (") �

Z "

"
"�m (") d eH2 (") :

Equation (29) then follows from (31) and (32). This completes the proof of Lemma A1. �

The results in Proposition 3 followed immediately by Lemma A1. Speci�cally, �x k 2 (kmin; kmax) :

By Lemma 2, n (k; �; ") is non-decreasing in " for all � 2
�
�; �
�
: Thus, after integrating it over the

distribution of �; the resulting function

N (k; ") �
Z �

�
n (k; �; ") dH1 (�)

is bounded and non-decreasing in ": Then by Lemma A1, (21) is su¢ cient to ensure that

N (k) �
Z "

"
"N (k; ") dH2 (") � eN (k) � Z "

"
"N (k; ") d eH2 (") ;

for any k 2 (kmin; kmax) : This completes the proof of Proposition 3.
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Proof of Proposition 4

Let k� and ek� be the unique solution of (14) under H2 (�) and eH2 (�) ; respectively. As shown in
the proof of Lemma 1, N (�) is non-decreasing while Y (�) is strictly decreasing. These results hold

regardless of the distributions of ": Hence, eN (�) and eY (�) will have the same properties. Suppose
the contrary that k� < ek�: Then we have

Y
�ek�� < Y (k�) = � (k�)N (k�)

< �
�ek��N �ek��

� �
�ek�� eN �ek�� = Y

�ek�� : (33)

The �rst inequality uses the fact that Y (�) is strictly decreasing. The second inequality uses

the fact that � (�) and N (�) are both strictly positive and increasing. The third inequality uses

the result in Proposition 3. The last equality follows from the de�nition of ek�: Since there is
a contradiction in (33), it must be the case that k� � ek�: Since y (k; �) and c (k; �) are strictly
decreasing in k for all � 2

�
�; �
�
; we have y (k�; �) � y

�ek�; �� and c (k�; �) � c
�ek�; �� : Since Y (�)

is strictly decreasing and � (�) is increasing, we have Y (k�) � Y
�ek�� and � (k�) � ��ek��. Taken

together, these imply

N (k�) =
Y (k�)

� (k�)
�
Y
�ek��

�
�ek�� = eN �ek�� :

This completes the proof of Proposition 4.

Proof of Proposition 5

The proof of Proposition 5 uses the following intermediate result:

Lemma A2 Suppose Assumption A3 is satis�ed. Then � (�) is a convex (or concave) function

if and only if � 0 (�) is concave (or convex).

Proof of Lemma A2 Pick any two positive real numbers y1 and y2; and any � 2 (0; 1) : Then

� 0 (�y1 + (1� �) y2) ? �� 0 (y1) + (1� �) � 0 (y2)

, �
�
� 0 (�y1 + (1� �) y2)

�
? �

�
�� 0 (y1) + (1� �) � 0 (y2)

�
, �y1 + (1� �) y2 ? �

�
�� 0 (y1) + (1� �) � 0 (y2)

�
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, ��
�
� 0 (y1)

�
+ (1� �)�

�
� 0 (y2)

�
? �

�
�� 0 (y1) + (1� �) � 0 (y2)

�
:

The second line uses the fact that � (�) is strictly increasing. The third and fourth lines follow

from the identity � [� 0 (y)] = y: Hence, � (�) is convex (or concave) if and only if � 0 (�) is concave

(or convex). This completes the proof of Lemma A2. �

Suppose eH1 (�) is a mean-preserving spread of H1 (�) and � 0 (�) is convex so that � (�) is concave.
Then we can write

Y (k) �
Z �

�
�

�
1� �

r (k)

�
dH1 (�) � eY (k) � Z �

�
�

�
1� �

r (k)

�
d eH1 (�) ;

for any k 2 (kmin; kmax) : In other words, changing the distribution of time preference from H1 (�)

to eH1 (�) will shift the Y (k) curve in Figure 1a to the left. Hence, we have ek� � k�: A similar

argument can be used to establish the result in part (ii).

Proof of Proposition 6

For any q 2 [0; 1] ; de�ne � (q) � sup f� : H1 (�) � qg and e� (q) � supn� : eH1 (�) � q
o
: According

to (3.A.41) and (3.A.42) in Shaked and Shanthikumar (2007, p.118), eH1 (�) is a mean-preserving
spread of H1 (�) if and only if

R �
�(q) �dH1 (�)R �
�(q) dH1 (�)

�
R �e�(q) �d eH1 (�)R �e�(q) d eH1 (�) and

R �(q)
� �dH1 (�)R �(q)
� dH1 (�)

�

R e�(q)
� �d eH1 (�)R e�(q)
� d eH1 (�) ;

for any q 2 [0; 1] : Since
R �
�(q) dH1 (�) =

R �e�(q) d eH1 (�) = 1� q and R �(q)� dH1 (�) =
R e�(q)
� d eH1 (�) = q,

these conditions can be more succinctly expressed as

Z �

�(q)
�dH1 (�) �

Z �

e�(q) �d eH1 (�) ; (34)

Z �(q)

�
�dH1 (�) �

Z e�(q)
�

�d eH1 (�) ; (35)

for all q 2 [0; 1] :
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Using (9) and (34), we can write

Z �

�(q)
� 0 [y (k; �)] dH1 (�) =

Z �

�(q)
dH1 (�)�

1

r (k)

Z �

�(q)
�dH1 (�)

�
Z �

e�(q) d eH1 (�)� 1

r (k)

Z �

e�(q) �d eH1 (�) =
Z �

e�(q) � 0 [y (k; �)] d eH1 (�) ;
for any k 2 (kmin; kmax) : If the marginal tax function is concave so that ek� � k�, then we have

Z �

�(q)
� 0 [y (k�; �)] dH1 (�) �

Z �

e�(q) � 0 [y (k�; �)] d eH1 (�)
�

Z �

e�(q) � 0
h
y
�ek�; ��i d eH1 (�) :

The second inequality uses the fact that � 0 (�) is strictly increasing and y (k; �) is strictly decreasing

in k: The results in part (ii) can be similarly obtained by using (9) and (35).

Proof of Lemma 7

Part (i) The desired result follows immediately from the observation that lim
n!0

v0 (n) = 0 is

incompatible with v0 (0) � w (k) "�=r (k) > 0; for any k 2 [kmin; kmax] and for all (�; ") 2
�
�; �
�
�

["; "] :

Part (ii) Suppose the contrary that n (k; �; ") = 1 for some k 2 (kmin; kmax) and for some

(�; ") 2
�
�; �
�
� ["; "] : Then using (26), we can write

w (kmax) " < v0 (1) � w (k)

r (k)
"�: (36)

By Assumption A4, w (�) is strictly increasing and r (�) is strictly decreasing. Thus, for any

k 2 (kmin; kmax) and (�; ") 2
�
�; �
�
� ["; "] ; we have

w (k)

r (k)
"� <

w (kmax)

r (kmax)
� � " = w (kmax) ": (37)

The last equality follows from the fact that r (kmax) = �: Since (36) and (37) are contradictory, it

must be the case that n (k; �; ") < 1 for all k 2 (kmin; kmax) and for all (�; ") 2
�
�; �
�
� ["; "] : This

completes the proof of Lemma 7.
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Proof of Proposition 8

Fix k 2 (kmin; kmax) and " 2 ["; "] : Suppose v0 (1) > w (kmax) " is satis�ed. Then by Lemma 7, we

have 1 > n (k; �; ") � 0; or equivalently,

v0 [n (k; �; ")] � w (k)

r (k)
"�;

for all � 2
�
�; �
�
: Suppose the contrary that there exists �1 < �2 in

�
�; �
�
such that n (k; �; ") is

strictly concave over the interval [�1; �2] : Then for any � 2 (0; 1) ; we can write

n (k; ��; ") > �n (k; �1; ") + (1� �)n (k; �2; ") � 0;

where �� = ��1 + (1� �) �2: Since v0 (�) is strictly increasing and concave, we can get

v0 [n (k; ��; ")] > v0 [�n (k; �1; ") + (1� �)n (k; �2; ")]

� �v0 [n (k; �1; ")] + (1� �) v0 [n (k; �2; ")]

� w (k)

r (k)
"��:

This contradicts the hypothesis that n (k; ��; ") > 0: Hence, n (k; �; ") must be convex in � over the

entire range
�
�; �
�
: Since convexity is preserved by integration, this means

R "
" "n (k; �; ") dH2 (") is

also a convex function in �: Finally, since eH1 (�) is a mean-preserving spread of H1 (�) ; we have
N (k) �

Z �

�

�Z "

"
"n (k; �; ") dH2 (")

�
dH1 (�) �

Z �

�

�Z "

"
"n (k; �; ") dH2 (")

�
d eH1 (�) � eN (k) ;

for all k 2 [kmin; kmax] : The results in part (ii) can be established using the same line of argument.

This completes the proof of Proposition 8.
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